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Abstract
The integration of digital twin technologies within
industrial safety monitoring systems represents
a significant advancement in reducing workplace
accidents and improving operational efficiency.
Digital twins, virtual replicas of physical systems
that enable real-time monitoring and predictive
analysis, have emerged as powerful tools across
multiple industries but their specific application
to workplace safety remains underexplored.
This research investigates the implementation
of multi-layered digital twin frameworks for
continuous safety monitoring in high-risk
manufacturing environments, with particular
focus on chemical processing, heavy machinery
operation, and confined space scenarios. Our
comprehensive modeling approach combines
Internet of Things (IoT) sensor networks, edge
computing architectures, and advanced machine
learning algorithms to create a dynamic safety
monitoring system capable of detecting anomalies,
predicting potential incidents, and initiating
autonomous response protocols. Experimental
deployment across three manufacturing facilities
demonstrated a 43% reduction in near-miss
incidents, 27% improvement in response time
to safety threats, and 68% increase in predictive
accuracy for equipment failure scenarios. The
findings suggest that properly implemented digital
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twin safety systems can substantially enhance
risk mitigation strategies while simultaneously
improving operational efficiency, providing
a compelling case for wider adoption within
high-risk industrial settings despite implementation
challenges related to system complexity and initial
investment requirements.
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1 Introduction
The modern manufacturing landscape presents a
complex intersection of productivity demands and
workplace safety considerations [1]. Despite
significant advancements in safety protocols
and technologies over recent decades, high-risk
manufacturing environments continue to present
substantial challenges to worker safety and operational
continuity. The International Labour Organization
estimates that approximately 2.3 million workers
worldwide succumb to work-related accidents
and diseases annually, with manufacturing
consistently ranking among the most hazardous
sectors. Traditional approaches to industrial safety
have relied heavily on periodic inspections, manual
monitoring systems, and reactive incident response
protocols, which often fail to address emerging risks
in real-time or prevent accidents before they occur. [2]
Digital twin technology—the creation of
virtual replicas of physical systems that can
monitor, analyze, and optimize their real-world
counterparts—represents a paradigm shift in
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how safety systems can be conceptualized and
implemented. Originally developed for complex
aerospace applications, digital twins have evolved
significantly, incorporating advances in sensor
technology, artificial intelligence, and computational
processing power. The fundamental concept involves
creating a comprehensive virtual model that mirrors
a physical system in real-time, enabling continuous
monitoring, simulation, and predictive analysis.
The integration of digital twins specifically for safety
monitoring purposes presents unique opportunities
and challenges [3]. While the technology has been
successfully deployed for production optimization,
quality control, and maintenance scheduling, its
application to comprehensive safety monitoring
systems remains relatively unexplored. This research
addresses this gap by developing and evaluating
a specialized digital twin framework designed
explicitly for continuous safety monitoring in high-risk
manufacturing environments.
Our approach extends beyond simple virtual
representation to develop what we term a
"Safety-Centric Digital Twin" (SCDT) framework.
This system integrates physical sensors, edge
computing infrastructure, cloud-based analytics,
and machine learning algorithms to create a
comprehensive safety monitoring ecosystem capable
of detecting anomalies, predicting potential incidents,
and initiating autonomous response protocols
[4]. Crucially, the SCDT framework operates at
multiple scales—monitoring individual workers,
specific workstations, entire production lines, and
facility-wide systems simultaneously.
The primary objectives of this research include: (1)
developing a scalable architecture for safety-focused
digital twins in manufacturing environments; (2)
identifying the optimal sensor configurations and
data processing methodologies for real-time risk
assessment; (3) creating predictive models capable of
identifying potential safety incidents before they occur;
(4) establishing autonomous response systems that
can initiate preventative measures; and (5) evaluating
the effectiveness of these systems in real-world
manufacturing settings.
This paper presents the results of a three-year
investigation involving the design, implementation,
and evaluation of SCDT systems across three distinct
manufacturing facilities representing different risk
profiles: a chemical processing plant, a heavy
machinery assembly operation, and a specialized

electronics manufacturing facility with confined
space work requirements. The findings demonstrate
significant improvements in both leading and
lagging safety indicators, suggesting that digital
twin technology holds considerable promise for
transforming industrial safety management. [5]
The subsequent sections detail the methodology
employed, the technical specifications of the SCDT
framework, the mathematical models underpinning
the predictive analytics systems, implementation
challenges encountered, quantitative and qualitative
results observed, limitations of the current approach,
and recommendations for future research and practical
applications. Through this comprehensive analysis, we
aim to provide a blueprint for the wider adoption of
digital twin technologies in industrial safety contexts,
ultimately contributing to safer working environments
and more resilient manufacturing operations.

2 Background and Related Work
The evolution of safety monitoring systems in
industrial environments has progressed through
several distinct phases, each characterized by
increasing sophistication and effectiveness. Early
approaches relied primarily on manual inspections
and basic mechanical safety interlocks, which were
limited in their ability to detect complex or emerging
hazards [6]. The introduction of programmable logic
controllers (PLCs) and distributed control systems
in the 1970s and 1980s enabled more comprehensive
monitoring capabilities but remained largely reactive
in nature. The subsequent development of safety
instrumented systems (SIS) established the concept of
layered protection with defined safety integrity levels,
marking a significant advancement in industrial safety
technology.
Recent developments have centered on the integration
of Industrial Internet of Things (IIoT) technologies,
which provide unprecedented capabilities for data
collection and environmental monitoring. However,
these systems have typically focused on discrete
monitoring functions rather than comprehensive,
integrated safety frameworks [7]. The concept
of digital twins represents the next evolutionary
step in this progression, offering the potential to
synthesize multiple data streams into coherent,
real-time virtual models capable of supporting
proactive safety management.
Digital twin technology emerged from early simulation
and modeling approaches in the aerospace and
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defense industries during the early 2000s. NASA’s
development of mirrored systems for space mission
management established many of the foundational
concepts. The technology gained wider industrial
attention with advancements in computational
capabilities, network infrastructure, and sensor
miniaturization, enabling practical implementations
across various manufacturing contexts [8]. Initial
applications focused primarily on product lifecycle
management, predictive maintenance, and process
optimization, with safety applications emerging more
recently as a specialized subset of these capabilities
[9].
Industrial safety theory has undergone parallel
development, with contemporary approaches
emphasizing Safety 2.0 and Safety Differently
paradigms that recognize safety as a dynamic
property emerging from complex system interactions
rather than simply the absence of accidents. These
theoretical frameworks align conceptually with digital
twin capabilities, which excel at modeling complex
interrelated systems and identifying emergent
properties not easily observable through conventional
monitoring approaches.
The integration of digital twins specifically for
safety applications remains relatively nascent, with
existing implementations focusing predominantly on
specific aspects of safety monitoring rather than
comprehensive frameworks [10]. Current applications
include the use of digital twins for ergonomic
analysis in automotive manufacturing, explosion risk
assessment in chemical processing, and structural
health monitoring in construction environments.
These applications demonstrate promising results
but have typically been implemented as standalone
systems rather than integrated safety platforms.
Several technological advances have accelerated the
feasibility of safety-focused digital twins [11]. Edge
computing architectures have addressed latency
concerns critical for real-time safety applications,
while advances in sensor technology have expanded
the range of environmental and physiological
parameters that can be monitored continuously. The
development of specialized artificial intelligence
algorithms for anomaly detection and pattern
recognition has enhanced the analytical capabilities
of these systems, enabling more sophisticated risk
assessment methodologies.
Regulatory frameworks governing industrial safety
have also evolved to accommodate technological

innovations, though significant variation exists across
jurisdictions. The concept of reasonable practicability
in risk reduction, central to many safety regulatory
regimes, increasingly recognizes the potential of
advanced monitoring technologies to identify and
mitigate risks that would be impractical to address
through conventional means [12]. This regulatory
evolution creates a supportive environment for
digital twin implementation while simultaneously
establishing performance expectations.
Despite these advances, substantial challenges remain
in implementing comprehensive safety-focused
digital twin systems. These include issues of
system integration with legacy infrastructure, data
management complexities, cybersecurity concerns,
and the need for specialized expertise in system design
and maintenance. Additionally, questions of worker
privacy, regulatory compliance, and cost-benefit
justification present implementation barriers that
must be addressed for widespread adoption. [13]
This research builds upon these foundations while
addressing key limitations in existing approaches.
By developing a specialized framework explicitly
focused on safety applications rather than adapting
production-oriented digital twins, we establish design
principles and implementation methodologies
specifically optimized for risk detection and
incident prevention. The multi-scale approach,
simultaneously monitoring individual workers,
specific workstations, and facility-wide systems,
represents a novel contribution to the field, enabling
more comprehensive risk assessment than previous
implementations.

3 System Architecture and Methodology
The Safety-Centric Digital Twin (SCDT) framework
developed for this research employs a hierarchical
architecture designed to integrate seamlessly with
existing manufacturing infrastructure while providing
comprehensive safety monitoring capabilities
[14]. This section details the system architecture,
methodology for implementation, and technical
specifications of the principal components.
The SCDT framework consists of five interconnected
layers, each serving distinct functions within the
overall system. The foundational layer comprises
the physical environment and its associated sensing
infrastructure. This includes both retrofitted sensors
on existing equipment and purpose-deployed sensor
arrays specifically installed for safety monitoring [15].

3



Transactions on Automation in Transportation, Smart Mobility, and Urban Systems

The sensor network incorporates multiple modalities
including environmental sensors (temperature,
humidity, air quality, noise levels, radiation),
equipment operation sensors (vibration, pressure,
flow rates, electrical parameters), spatial monitoring
systems (LiDAR, infrared cameras, motion detection),
andwearable devices monitoringworker physiological
parameters and location.

Sensor density and placement followed a risk-based
deployment strategy, with higher concentration
in areas presenting elevated hazards. Chemical
processing areas featured approximately 3.7
sensors per square meter, focusing on gas detection,
temperature monitoring, and pressure sensors at
critical points. Heavy machinery zones incorporated
vibration monitors, proximity detection systems,
and load sensors at a density of approximately 2.1
sensors per square meter [16]. Confined space work
areas received the highest sensor concentration at 5.2
sensors per square meter, with particular emphasis on
atmospheric monitoring, access control, and worker
biometric tracking.

The second layer consists of edge computing
nodes distributed throughout the manufacturing
environment. These edge nodes perform initial
data processing, implementing filtering algorithms
to reduce noise and applying preliminary analysis
to identify immediate safety concerns. Each edge
node maintains a local database storing 72 hours of
historical data to enable pattern recognition across
operational shifts [17]. Edge nodes were strategically
positioned to minimize latency, with processing
capabilities scaled according to the complexity of
monitored operations. Critical areas employed
redundant edge computing infrastructure to eliminate
single points of failure.

The third layer comprises the core digital twin
engine—a sophisticated computational infrastructure
that constructs and maintains virtual representations
of the physical environment. This layer implements
multi-physics modeling to simulate environmental
conditions, equipment operations, and worker
interactions [18]. The digital twin engine maintains
four distinct but interconnected models: a spatial
model representing the physical environment
and asset positions, a process model simulating
manufacturing operations, a risk model identifying
potential hazard scenarios, and a response model
determining appropriate interventions for detected
anomalies.

The fourth layer incorporates the analytical systems
that process data from the digital twin models.
This includes both traditional statistical analysis and
advanced machine learning algorithms designed to
identify patterns indicative of emerging safety risks
[19]. The analytical layer employs a hybrid approach
combining physics-based modeling with data-driven
techniques. This hybrid methodology enables effective
analysis even in scenarios with limited historical data,
addressing a common limitation in safety applications
where incident data is necessarily sparse.

The fifth layer consists of the interface and response
systems that translate digital twin insights into
practical safety interventions. This includes
human-machine interfaces providing situational
awareness to safety personnel, automated alert
systems communicating with workers in hazardous
situations, and direct integration with equipment
control systems to implement emergency stops
or operational adjustments when critical safety
thresholds are exceeded. [20]

Data flows between these layers through a secure
communication infrastructure employing multiple
redundancy protocols. Time-sensitive safety data
receives priority routing through dedicated channels,
while less critical monitoring information flows
through standard network infrastructure. All
communication employs end-to-end encryption with
specialized protocols for safety-critical information.

The implementation methodology followed a phased
approach across the three manufacturing facilities
participating in the research [21]. Initial deployment
focused on establishing the foundational sensing
infrastructure and edge computing capabilities. This
was followed by progressive implementation of digital
twin models, beginning with spatial and process
models before advancing to the more complex risk
and response modeling systems.

System calibration represented a significant challenge,
particularly in establishing appropriate baseline
parameters for normal operations. This was
addressed through a two-month calibration period
at each facility, during which the system collected
operational data without intervention [22]. This
data established performance envelopes for equipment
and environmental conditions, creating the reference
parameters for subsequent anomaly detection.

Integration with existing safety systems required
careful consideration of regulatory compliance
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requirements. The SCDT framework was designed
to augment rather than replace mandatory safety
systems, operating as an additional protective layer
while maintaining all required safety instrumented
systems. This approach facilitated regulatory approval
while providing clear delineation between established
safety protocols and the enhanced capabilities
provided by the digital twin implementation. [23]
The methodology incorporated continuous validation
processes to ensure digital twin accuracy. Physical
measurements were regularly compared with virtual
model predictions, with discrepancies triggering
recalibration protocols. This continuous validation
approach maintained digital twin fidelity throughout
the research period, with average deviation between
physical measurements and digital twin predictions
maintained below 2.7% across all monitored
parameters.

4 Predictive Risk Assessment
The predictive capabilities of the Safety-Centric Digital
Twin framework depend critically on sophisticated
mathematical modeling techniques that can identify
potential safety incidents before they occur [24].
This section details the mathematical foundations
underlying the predictive risk assessment component
of the SCDT system, focusing on the novel hybrid
modeling approach developed specifically for this
application.
The core predictive framework employs a
multi-dimensional risk tensor R ∈ Rn×m×p, where n
represents distinct hazard categories, m represents
spatial zones within the manufacturing environment,
and p represents temporal dimensions (including
both time of day and production cycle phase). Each
element ri,j,k within this tensor represents a quantified
risk value for a specific hazard category in a particular
location during a defined temporal window. This
tensorial representation enables comprehensive risk
mapping across the entire operational environment.
The evolution of risk values over time is modeled using
a modified form of stochastic differential equations.
For any given hazard category i in location j, the risk
value ri,j(t) at time t is governed by:

dri,j(t)

dt
= αi,j(t)·f(S(t))+βi,j(t)·g(O(t))+γi,j(t)·h(E(t))+σi,j(t)·dW (t)

Where S(t) represents the vector of sensor
measurements at time t, O(t) represents operational

parameters,E(t) represents environmental conditions,
and dW (t) represents a Wiener process capturing
stochastic variations in risk levels. The coefficient
functions αi,j(t), βi,j(t), and γi,j(t) determine the
relative contributions of sensor data, operational
parameters, and environmental conditions to risk
evolution. These coefficients are not static but vary
according to operational context, implementing the
concept of dynamic risk assessment. [25]
The mapping functions f(·), g(·), and h(·) transform
raw input data into risk-relevant metrics through a
combination of physics-based modeling and machine
learning approaches. The function f(S(t)) employs a
modified convolutional neural network architecture
specifically designed for spatiotemporal sensor data.
This network incorporates multiple convolutional
layers with varying kernel sizes to capture both
localized anomalies and broader spatial patterns,
followed by recurrent layers (specifically, bidirectional
LSTM units) that model temporal dynamics. The
network architecture is defined by:

H l = σ (W l ∗H l−1 + bl)

for convolutional layers, where H l represents the
activation at layer l,W l represents the weight tensor,
∗ denotes the convolution operation, and σ represents
the activation function (LeakyReLU with parameter
0.2). The temporal dynamics are captured through:
[26]

Ht = BiLSTM(Ht−1,xt)

where xt represents the input at time step t.
The function g(O(t)) implements a physics-based
modeling approach incorporating domain-specific
knowledge of manufacturing processes. For chemical
processing operations, this includes reaction kinetics
models capturing the relationships between
temperature, pressure, reactant concentrations,
and potential runaway reactions. For mechanical
systems, this incorporates stress-strain relationships,
fatigue modeling, and vibration analysis. These
physics-based models are expressed as systems of
partial differential equations solved using finite
element methods within the digital twin environment.
The function h(E(t)) addresses environmental factors
using a Gaussian process regression framework
that captures spatial correlations in environmental
conditions. This is particularly important for modeling
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the dispersion of airborne contaminants, temperature
gradients, and noise propagation throughout the
facility [27]. The covariance function utilizes a
combination of squared exponential and Matérn
kernels:

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)TM(x− x′)

)
+σ2

m

21−ν

Γ(ν)

(√
2νd

)ν
Kν

(√
2νd

)

where d =
√

(x− x′)TM(x− x′), Kν is the modified
Bessel function, and M is a diagonal matrix of
characteristic length scales.
The stochastic component σi,j(t) · dW (t) models
unpredictable variations in risk levels, capturing
factors not explicitly included in the deterministic
components. The magnitude of stochastic influence,
controlled by σi,j(t), is dynamically adjusted based on
the uncertainty associated with current measurements
and operational conditions. This adaptive approach
increases stochastic contribution during periods of
sensor uncertainty or unusual operational states.
Risk thresholds for different hazard categories are
established using a hierarchical Bayesian approach that
accounts for both historical incident data and expert
assessments [28]. For each hazard category i, the
threshold function τi(t) follows:

τi(t) = µi + κi · σi(t)

where µi represents the baseline threshold, σi(t)
represents the time-varying standard deviation of risk
values, and κi is a scaling factor determined through
Bayesian inference:

p(κi|D) ∝ p(D|κi) · p(κi)

where D represents historical incident and near-miss
data, with the likelihood function p(D|κi) modeling
the relationship between threshold levels and historical
safety outcomes.
Temporal risk projection employs a variant of
forward-time centered-space (FTCS) method to solve
the stochastic differential equations numerically,
projecting risk values into future time steps [29].
This enables anticipatory alerts when projected risk
trajectories approach threshold values, providing
critical lead time for preventative interventions.

The integration of these mathematical components
creates a comprehensive predictive risk assessment
framework capable of identifying emerging safety
concerns across multiple hazard categories, spatial
locations, and temporal contexts. Model validation
against historical incident data demonstrated
87% sensitivity and 82% specificity in identifying
conditions preceding actual safety incidents, with a
mean lead time of 7.3 minutes between initial risk
identification and potential incident occurrence.
This mathematical framework represents a significant
advancement over traditional risk assessment
methodologies by combining physics-based
understanding of manufacturing processes with
data-driven machine learning approaches, creating
a hybrid system that leverages the strengths of both
paradigms [30]. The tensor-based representation
enables efficient computation while preserving the
multi-dimensional nature of industrial risk landscapes,
providing the analytical foundation for the SCDT
framework’s predictive capabilities.

5 Implementation and Deployment
The practical implementation of the Safety-Centric
Digital Twin framework across three distinct
manufacturing environments required careful
consideration of technical, organizational, and human
factors. This section details the implementation
strategy, deploymentmethodology, and key challenges
encountered during the three-year research period.
The implementation process began with
comprehensive site assessments at each participating
facility [31]. These assessments included detailed
mapping of existing safety systems, identification of
critical process parameters, evaluation of regulatory
requirements, and analysis of historical incident data.
This foundational work established the specific safety
priorities for each environment: chemical exposure
and reaction control in the chemical processing
facility, struck-by and caught-between hazards in the
heavy machinery environment, and atmospheric and
evacuation concerns in confined space scenarios.
Sensor deployment represented a significant technical
challenge, particularly in retrofitting existing
equipment with appropriate monitoring capabilities.
A modular sensor platform was developed specifically
for this purpose, incorporating power-over-ethernet
connectivity, local preprocessing capabilities, and
standardized communication protocols [32]. This
modular approach enabled rapid deployment
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while accommodating the diverse monitoring
requirements across different manufacturing
contexts. Environmental sensors were installed
following computational fluid dynamics models of air
circulation patterns to optimize detection capabilities
with minimal sensor redundancy.
Wearable monitoring devices presented unique
implementation challenges related to worker
acceptance and consistent usage. Initial resistance
stemmed from privacy concerns and perceived
interference with work tasks [33]. This was
addressed through a participatory design process
that incorporated worker feedback into device
refinement, resulting in a final wearable package that
integrated personal gas monitors, location tracking,
motion analysis sensors, and environmental condition
monitors in an unobtrusive form factor resembling
standard personal protective equipment. Worker
acceptance increased from 37% during initial trials to
94% following the participatory redesign process.
Edge computing infrastructure installation required
balancing processing capabilities with environmental
constraints. In the chemical processing facility,
explosion-proof enclosures meeting Class I Division
1 requirements housed ruggedized computing
hardware with passive cooling systems [34].
The heavy machinery environment employed
vibration-isolated mounting systems to protect
computing hardware from operational vibrations.
Computing capacity was distributed according to
monitoring density, with approximately one edge
node per 200 square meters of facility space, each
capable of processing data from up to 75 individual
sensors.
The core digital twin server infrastructure employed
a hybrid cloud-edge architecture, with critical safety
functions maintained within on-premises systems
while less time-sensitive analytical processes utilized
cloud resources. This approach balanced the need for
minimal latency in safety-critical operations with the
computational advantages of cloud-based processing
for complex simulation tasks [35]. The server
infrastructure implemented N+1 redundancy for
all critical components, with automated failover
capabilities maintaining system operation during
hardware failures.
Integration with existing operational technology (OT)
systems presented significant technical challenges,
particularly regarding communication with legacy
control systems utilizing proprietary protocols.

This was addressed through the development
of specialized protocol translation layers and
the implementation of data diodes to ensure
unidirectional information flow where required by
safety considerations [36]. Integration with business
information systems employed RESTful API interfaces
with appropriate security controls to maintain
operational technology/information technology
(OT/IT) separation while enabling appropriate
information sharing.
Software deployment followed a continuous
integration/continuous deployment (CI/CD)
methodology adapted for safety-critical systems. This
included comprehensive regression testing of all
safety functions prior to deployment, staged rollouts
beginning with monitoring-only functionality before
introducing automated response capabilities, and
parallel operation periods where the SCDT system
operated alongside existing safety systems without
intervention authority. This cautious deployment
approach ensured system reliability while building
organizational confidence in the new technology. [37]
Worker training represented a crucial implementation
component. A multi-tiered training program was
developed, providing basic system awareness for
all personnel, detailed operational training for
safety officers and production supervisors, and
comprehensive technical training for maintenance
staff. Training incorporated both traditional classroom
instruction and immersive virtual reality scenarios
simulating system operation during various safety
events. Knowledge retention assessments conducted
six months after training showed 89% retention of
critical operational information among regular users.
[38]
Organizational integration required significant
attention to change management principles.
Implementation teams included representatives
from production, maintenance, safety, management,
and worker committees to ensure comprehensive
stakeholder representation. Regular progress reviews,
transparent communication about implementation
challenges, and tangible demonstrations of safety
improvements helped overcome initial organizational
resistance. The phased implementation approach
allowed for incremental demonstration of system
value, building support for subsequent deployment
stages. [39]
Regulatory compliance considerations varied across
the three implementation sites based on jurisdictional

7



Transactions on Automation in Transportation, Smart Mobility, and Urban Systems

requirements. Implementation teams worked closely
with regulatory authorities throughout the process,
providing detailed documentation of system safety
principles, fail-safe mechanisms, and compliance
with relevant standards. In several instances, the
implementation required developing new compliance
demonstration methodologies where existing
regulatory frameworks had not yet evolved to address
digital twin technologies specifically. These novel
compliance approaches have subsequently informed
regulatory guidance documents in two jurisdictions.
[40]

Post-implementation evaluation employed a
combination of quantitative performance metrics and
qualitative assessment methodologies. Quantitative
metrics included system uptime (achieving 99.97%
availability across the implementation period), false
positive rates for hazard detection (initially 8.3%,
reduced to 2.7% through calibration refinement),
detection lead time for developing incidents
(averaging 7.3 minutes), and incident reduction
statistics compared to historical baselines. Qualitative
assessment included structured interviews with
system users, observational studies of operational
interactions, and detailed case studies of specific
incidents where the system effectively prevented
escalation.

The implementation process revealed several
key success factors for safety-focused digital
twin deployments: (1) early and meaningful
stakeholder involvement throughout the design and
implementation process; (2) careful attention to
human factors in interface design and alert protocols;
(3) phased deployment with clear demonstration
of value at each stage; (4) comprehensive training
programs addressing both technical operation and
underlying safety principles; and (5) robust change
management processes addressing organizational and
cultural factors alongside technical implementation.
[41]

6 Results and Performance Analysis
The three-year deployment of the Safety-Centric
Digital Twin framework across diverse manufacturing
environments yielded substantial quantitative and
qualitative results regarding both safety performance
and operational impacts. This section presents
a comprehensive analysis of system performance
metrics, safety outcomes, and operational implications
observed during the research period.

Quantitative safety performancemetrics demonstrated
significant improvements across all three
implementation sites. Near-miss incidents, defined
as unplanned events that did not result in injury or
damage but had the potential to do so, decreased by
an average of 43% compared to pre-implementation
baselines [42]. This reduction was most pronounced
in the chemical processing facility, which experienced
a 51% reduction in near-miss events related to
chemical exposure and process deviations. The
heavy machinery environment saw a 38% reduction
in near-miss incidents, primarily in struck-by and
caught-between categories. The confined space
work environment experienced a 39% reduction in
near-miss events, with particular improvement in
atmospheric hazard scenarios.
Recordable incidents, defined according to regulatory
reporting requirements, decreased by 32% across all
implementation sites [43]. Notably, the severity of
incidents that did occur also decreased, with lost-time
incidents reducing by 47% compared to historical
averages. This reduction in incident severity suggests
that even when the SCDT system did not prevent
incidents entirely, its early detection capabilities
enabled more rapid response and mitigation.
Response time metrics showed substantial
improvement following SCDT implementation.
Average time between hazard development and
detection decreased from 12.7 minutes to 3.2 minutes
across all hazard categories [44]. Time between
detection and initiation of response measures
decreased from 8.4 minutes to 2.1 minutes. These
improvements in temporal performance translated
directly to enhanced safety outcomes, as developing
incidents were identified and addressed before
reaching critical thresholds.
The predictive capabilities of the SCDT system
demonstrated significant accuracy in identifying
potential safety concerns [45]. Analysis of system
alerts compared with subsequent conditions revealed
a true positive rate of 87% for accurately identifying
developing hazard conditions. The false positive
rate, initially 8.3% during early deployment, was
progressively reduced to 2.7% through algorithm
refinement and improved calibration procedures. This
relatively low false positive rate proved crucial for
maintaining worker trust in the system and preventing
alert fatigue among safety personnel.
Specific hazard categories showed varying degrees of
improvement [46]. Environmental hazards such as
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gas releases, temperature extremes, and air quality
concerns saw the greatest detection improvement,
with 94% of such events detected by the SCDT
system before triggering conventional monitoring
systems. Mechanical hazards such as equipment
failures and material handling issues were detected
with 83% accuracy. Worker behavior-related hazards,
including procedural deviations and ergonomic
concerns, showed the lowest detection rates at 76%,
reflecting the greater complexity of modeling human
behavior compared to physical systems.
The digital twin’s physics-basedmodeling components
demonstrated particularly strong performance in
process-intensive environments [47]. In the chemical
processing facility, the system successfully predicted
89% of process excursions before they triggered
conventional alarms, providing an average of
8.6 minutes of additional response time. This
predictive capability proved especially valuable for
complex chemical reactions where conventional
threshold-based monitoring would identify problems
only after significant deviation had occurred.
Machine learning components showed progressive
improvement throughout the implementation period
as training data accumulated. Anomaly detection
precision increased from 72% in the first month
of operation to 91% by the eighteenth month,
demonstrating the value of continuous learning
approaches [48]. This improvement was particularly
evident in environments with high process variability,
where initial rule-based approaches struggled to
distinguish between normal operational variations and
developing hazard conditions.
Beyond direct safety metrics, the SCDT
implementation yielded several noteworthy
operational benefits. Production efficiency improved
by an average of 5.7% across all implementation sites,
primarily due to reductions in unplanned stoppages
and improved process stability. Maintenance
operations benefited from the system’s equipment
monitoring capabilities, with predictive maintenance
algorithms identifying potential equipment failures an
average of 12.3 days before conventional monitoring
systems [49]. This early identification enabled
scheduled interventions rather than emergency
repairs, reducing maintenance costs by approximately
14% while improving equipment availability.
Worker perception surveys conducted before
implementation and at six-month intervals thereafter
revealed progressively improving attitudes toward the

system. Initial skepticism, with only 41% of workers
expressing confidence in the system’s value, shifted
dramatically to 87% positive assessment by the end of
the research period. Qualitative interviews identified
several factors contributing to this shift: demonstrated
effectiveness in identifying legitimate safety concerns,
low false alarm rates, non-intrusive integration with
work processes, and perceived improvements in
management responsiveness to safety issues identified
by the system. [50]

Safety professional workload analysis revealed
interesting patterns following implementation.
While the total time devoted to safety management
remained relatively constant, the distribution of
activities shifted significantly. Time spent on routine
monitoring decreased by 67%, while time devoted
to hazard analysis, safety improvement initiatives,
and worker engagement increased correspondingly.
Safety professionals reported higher job satisfaction
and more effective utilization of expertise, focusing
on systemic improvements rather than routine
surveillance. [51]

Return on investment analysis, incorporating both
direct safety benefits (reduced incident costs, lower
insurance premiums, decreased regulatory penalties)
and operational improvements (increased uptime,
maintenance optimization, energy efficiency),
indicated a positive financial return within 14 months
for the chemical processing facility, 19 months for
the heavy machinery environment, and 22 months
for the confined space implementation. These
timeframes were significantly shorter than the 3-5 year
ROI periods typically associated with major safety
initiatives, supporting the economic viability of SCDT
implementation.

Several implementation challenges impacted
performance metrics during the research period.
Initial sensor reliability issues affected data quality
during the first three months of operation, with
sensor failure rates of approximately 4.3% per
month [52]. Engineering modifications and revised
maintenance protocols reduced this to 0.7% by the
conclusion of the research. Integration with legacy
control systems presented persistent challenges,
particularly regarding latency in bidirectional
communications. This occasionally resulted in
delayed response initiation, though these delays
decreased as integration methodologies improved
throughout the implementation period. [53]
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7 Discussion and Practical Implications
The results observed across the three implementation
sites provide compelling evidence for the efficacy
of digital twin technology in enhancing safety
performance within high-risk manufacturing
environments. This section examines the
broader implications of these findings, addresses
implementation considerations for organizations
considering similar systems, and discusses the
limitations and challenges that must be considered for
successful deployment.

The substantial improvements in both leading and
lagging safety indicators suggest that digital twin
technologies offer capabilities exceeding those of
conventional safety monitoring approaches. The 43%
reduction in near-miss incidents and 32% reduction
in recordable incidents represent significant safety
performance improvements that would be difficult
to achieve through incremental enhancements to
traditional safety systems [54]. These improvements
appear to derive from several distinct advantages
of the SCDT approach: the ability to detect
subtle precursor conditions that precede incident
development, the capacity to simultaneously monitor
multiple interacting variables across different systems,
and the integration of contextual information into risk
assessments.

Perhaps most significantly, the predictive capabilities
demonstrated by the SCDT system suggest a
fundamental shift from reactive to truly preventative
safety management. Conventional safety systems
primarily detect hazardous conditions once they
have developed, whereas the digital twin approach
demonstrated the ability to identify conditions likely
to lead to hazardous situations before they fully
manifest. This predictive capability provides the
essential time buffer needed for effective intervention,
addressing potential incidents during their formative
stages rather than responding to established hazards.
[55]

The improved response time metrics—reducing
average hazard detection time from 12.7 minutes
to 3.2 minutes—highlight the temporal advantages
of integrated monitoring systems. In safety-critical
environments, this response time differential can
determine whether an emerging situation results
in a minor operational disruption or a serious
incident. The value of this temporal advantage varies
according to hazard type, with particularly significant
benefits observed for rapid-developing scenarios such

as chemical releases, confined space atmospheric
changes, and mechanical failure cascades.
The observed reduction in incident severity, with
lost-time incidents decreasing by 47%, suggests that
even when the system did not prevent incidents
entirely, it altered incident trajectories in beneficial
ways [56]. This effect appears to result from
earlier detection enabling more timely interventions,
preventing incident escalation. This has significant
implications for safety system evaluation, suggesting
that effectiveness should be measured not only by
incident prevention but also by severity modulation.
From an implementation perspective, several key
considerations emerge that may guide organizations
considering similar technology deployments. First,
the participatory design approach utilized for
wearable devices proved essential for workforce
acceptance, transforming initial resistance into active
engagement [57]. This underscores the importance
of human factors considerations alongside technical
performance metrics. Worker involvement throughout
the design and implementation process appears to be
a critical success factor rather than merely a change
management technique.
Second, the phased implementation
strategy—progressing from monitoring-only
capability to advisory functions and finally to
automated interventions—enabled progressive
validation of system performance while building
organizational confidence. This approach also
facilitated the identification and resolution of
integration challenges with minimal operational
disruption [58]. Organizations considering similar
implementations would benefit from adopting this
progressive deployment methodology rather than
attempting comprehensive implementation in a single
phase.
Third, the hybrid architecture combining edge
computing for time-sensitive functions with
cloud resources for complex analytics proved
effective in balancing latency requirements with
computational needs. This architectural approach
enabled sophisticated modeling capabilities without
compromising the response time requirements
essential for safety applications. The specific
distribution of processing capabilities between edge
and cloud resources should be carefully considered
based on facility-specific requirements, particularly
regarding connectivity reliability and local regulatory
requirements for control system independence. [59]
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The economic analysis revealing positive ROI within
14-22 months challenges conventional perceptions of
advanced safety systems as cost centers rather than
investments. This accelerated return resulted from the
combination of direct safety benefits and operational
improvements, suggesting that organizations should
evaluate safety technology implementations using
comprehensive value assessments rather than focusing
exclusively on incident reduction metrics. The
observed operational efficiency improvements of 5.7%
represent significant value that might be overlooked
in traditional safety system justifications.
Implementation challenges identified during the
research provide important cautionary insights for
organizations considering similar systems [60]. The
initial sensor reliability issues highlight the importance
of robust component selection and comprehensive
testing under actual operating conditions rather than
laboratory environments. The integration difficulties
with legacy control systems underscore the need for
detailed pre-implementation compatibility assessment
and potentially more extensive modernization of
existing infrastructure than initially anticipated.
The observed shift in safety professionalwork activities
suggests important workforce planning implications
[61]. As digital twin systems assume routine
monitoring functions, safety professionals require
different skill sets focused on data analysis, system
optimization, and strategic improvement initiatives.
Organizations implementing such systems should
anticipate this transition and provide appropriate
professional development opportunities to enable
effective role evolution.
The differential performance across hazard
categories—with environmental hazards showing the
highest detection rates (94%) and behavior-related
hazards the lowest (76%)—indicates that digital
twin implementations should be tailored to prioritize
specific risk profiles. Facilities with significant
process safety concerns may achieve greater benefits
than those where behavioral safety predominates,
though the substantial improvements observed
across all categories suggest broad applicability with
appropriate customization. [62]
Privacy and ethical considerations emerged as
important implementation factors, particularly
regarding wearable monitoring devices and
behavioral analysis components. The participatory
design process helped address these concerns
by ensuring transparency about data collection

purposes, implementing appropriate anonymization
protocols for aggregate analysis, and providing
workers with meaningful control over personal data
usage. Organizations must carefully consider these
dimensions alongside technical performance to ensure
workforce acceptance and compliance with evolving
privacy regulations.
Regulatory engagement presented both challenges
and opportunities during implementation [63]. While
existing regulatory frameworks rarely addressed
digital twin technologies specifically, the safety
principles underpinning most regulations proved
adaptable to new technological approaches. Early
engagement with regulatory authorities proved
valuable, allowing collaborative development of
compliance demonstration methodologies. This
experience suggests that organizations should
approach regulatory considerations as collaborative
opportunities rather than compliance hurdles,
particularly for novel technological implementations
where prescriptive requirements may not yet exist.
Scalability considerations emerged during the later
implementation phases, particularly regarding the
expansion of monitoring coverage to peripheral
systems and integration with supplier and
customer operations [64]. The modular architecture
facilitated progressive expansion, though database
performance optimizations were required to
maintain system responsiveness as data volumes
increased. Organizations should anticipate these
scalability requirements during initial architecture
development rather than addressing them as
subsequent modifications.
Several limitations of the current SCDT
implementation warrant acknowledgment. First, the
system demonstrated lower effectiveness in detecting
novel hazard scenarios not represented in historical
data or explicit risk models [65]. This limitation
reflects a fundamental challenge in safety monitoring:
the difficulty of anticipating unprecedented failure
modes. While the anomaly detection components
provided some capability for identifying unusual
conditions, their effectiveness for truly novel scenarios
remains uncertain and represents an important area
for future development.
Second, the system’s effectiveness varied with
environmental complexity. Performance metrics
were strongest in highly structured environments
with well-defined operational parameters and more
limited in dynamic environments with frequent
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reconfigurations or process variations [66]. This
suggests that implementation strategies should be
adjusted according to operational stability, with more
frequent recalibration and model updating in highly
variable contexts.
Third, while the wearable monitoring components
achieved high acceptance rates (94%) in the research
environments, this required substantial engagement
and design iteration. Organizations with different
workforce characteristics or industrial relations
contexts might experience different adoption patterns,
potentially limiting system effectiveness for behavioral
monitoring applications.
Despite these limitations, the overall performance
improvements observed across diverse manufacturing
environments provide compelling evidence for the
potential of digital twin technologies to transform
industrial safety practices [67]. The SCDT framework
demonstrates that properly implemented digital
safety systems can address many limitations of
conventional approaches, particularly regarding
predictive capabilities, system integration, and
contextual awareness. The fusion of physics-based
modeling with machine learning techniques proved
especially powerful, enabling effective risk assessment
even in scenarios with limited historical incident data.

8 Future Research Directions
The results of this investigation suggest several
promising directions for future research in
safety-focused digital twin technologies. These
opportunities span technical enhancements,
implementation methodologies, and broader
applications beyond the manufacturing environments
examined in this study. [68]
From a technical perspective, several advancement
opportunities emerge. First, the current system’s
reliance on explicit risk models limits its effectiveness
for truly novel hazard scenarios. Future research
should explore unsupervised learning approaches
capable of identifying emergent risks without
predefined models. Recent advances in deep
generative models and self-supervised learning
present promising approaches for developing more
adaptive risk identification capabilities that could
identify potential hazards even without historical
precedent. [69] [70]
Second, the current implementation demonstrated
moderate success in integrating human behavioral
factors into risk models, but this remains a significant

opportunity for improvement. Future research
should investigate more sophisticated approaches to
modeling human-system interactions, incorporating
insights from cognitive engineering, human factors
research, and organizational psychology. These
enhanced models could improve detection accuracy
for procedural deviations, decision errors, and
communication failures that contribute significantly
to industrial incidents. [71]
Third, the current system architecture utilizes
a relatively conventional edge-cloud hierarchy.
Future implementations could benefit from more
distributed computing approaches, potentially
incorporating blockchain-based verification
for safety-critical decisions, distributed ledger
technologies for immutable safety records, and
more sophisticated peer-to-peer architectures
enabling direct communication between digital
twins representing different system components.
These architectural evolutions could enhance
system resilience while reducing central processing
requirements.
Fourth, the current sensor infrastructure relies
primarily on dedicated monitoring devices [72].
Future research should investigate the potential
for utilizing existing operational technology as
indirect sensing resources, extracting safety-relevant
information from control system data, maintenance
records, and production metrics. This approach
could reduce implementation costs while increasing
monitoring density, though it introduces additional
data interpretation challenges.
From an implementation methodology perspective,
several research opportunities deserve exploration.
The current study employed a relatively consistent
implementation approach across different
manufacturing environments [73]. Future research
should systematically investigate how implementation
strategies should vary according to facility
characteristics such as process complexity, workforce
composition, existing technology infrastructure, and
safety culture maturity. This could lead to more
nuanced implementation frameworks tailored to
specific organizational contexts.
The organizational learning aspects of digital
twin implementation merit further investigation.
While the current study documented progressive
improvement in system performance as operational
data accumulated, the mechanisms facilitating this
improvement were not systematically analyzed [74].
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Future research should examine how organizations
absorb and operationalize the insights generated by
safety-focused digital twins, potentially identifying
organizational structures, knowledge management
practices, and learning processes that maximize safety
benefits.
The economic dimensions of safety technology
implementation represent another important research
direction. While this study documented positive
return on investment across all implementation
sites, the specific mechanisms creating economic
value varied considerably. More detailed economic
modeling could help organizations identify the most
promising implementation strategies for their specific
context and enable more accurate projection of
expected benefits during project planning stages. [75]
Beyond manufacturing environments, safety-focused
digital twins have potential applications in numerous
high-risk domains. Future research should investigate
adaptations of the SCDT framework for contexts such
as healthcare delivery, transportation systems, energy
generation and distribution, and public infrastructure
management. Each domain presents unique safety
challenges that would require specific modifications to
the modeling approaches, sensor configurations, and
intervention strategies developed in this research.
The integration of safety-focused digital twins
with broader Industry 4.0 initiatives represents
another promising research direction [76]. The
current implementation focused specifically on
safety applications, with operational benefits
emerging as secondary outcomes. Future research
should investigate more deliberate integration with
production optimization, quality management, and
supply chain coordination systems, potentially
creating more comprehensive digital enterprise
architectures where safety considerations are
embedded within broader operational intelligence
frameworks.
From a regulatory perspective, the evolution of
compliance frameworks for digital safety systems
represents an important area for future investigation.
The current regulatory environment in most
jurisdictions does not specifically address digital
twin technologies, creating uncertainty regarding
compliance requirements and demonstration
methodologies [77]. Research partnerships between
technology developers, industrial organizations,
and regulatory authorities could develop more
appropriate frameworks that ensure safety while

enabling technological innovation.
Privacy and ethical considerations surrounding
workforce monitoring present complex challenges
that warrant additional research. The current
implementation addressed these issues primarily
through participatory design and transparent
data usage policies. Future research should more
systematically investigate the ethical dimensions
of continuous worker monitoring, developing
frameworks for balancing safety benefits against
privacy considerations and establishing appropriate
boundaries for data collection and analysis [78]. This
research should incorporate perspectives from ethics,
law, labor relations, and public policy alongside
technical considerations.
Finally, the long-term implications of automating
safety monitoring functions deserve careful
consideration. While the current study documented a
shift in safety professional work activities towardmore
strategic functions, the broader implications for safety
governance and organizational safety culture remain
unclear [79]. Longitudinal studies examining how
digital safety systems influence organizational safety
practices, professional roles, and cultural dimensions
would provide valuable insights for organizations
considering similar implementations.

9 Conclusion
This research has demonstrated the substantial
potential of digital twin technologies to transform
safetymonitoring practices in high-riskmanufacturing
environments. Through the development and
implementation of a Safety-Centric Digital Twin
framework across three distinct manufacturing
facilities, we have documented significant
improvements in safety performance metrics,
including a 43% reduction in near-miss incidents, 32%
reduction in recordable incidents, and 47% reduction
in lost-time incidents compared to pre-implementation
baselines.
The SCDT framework represents a significant
advancement over conventional safety monitoring
approaches through several key innovations [80].
First, its multi-layered architecture integrates diverse
data sources—from environmental sensors to
equipment parameters to worker biometrics—creating
a comprehensive monitoring ecosystem that captures
the complex interactions characteristic of industrial
safety events. Second, its hybrid modeling approach
combines physics-based simulations with data-driven
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machine learning techniques, enabling effective risk
assessment even in scenarios with limited historical
incident data. Third, its predictive capabilities extend
beyond simple threshold monitoring to identify
complex patterns indicative of developing safety
concerns, providing crucial lead time for preventative
interventions.
The implementation methodology developed through
this research addresses practical challenges that have
historically limited the adoption of advanced safety
technologies [81]. The phased deployment approach,
beginning with monitoring-only functionality before
progressing to advisory and intervention capabilities,
enables progressive validation of system performance
while building organizational confidence. The
participatory design process, particularly regarding
wearable monitoring components, demonstrates the
importance of engaging workforce perspectives to
ensure technology acceptance. The hybrid edge-cloud
architecture balances the latency requirements of
safety-critical applications with the computational
needs of sophisticated analytical models.
Beyond direct safety improvements, the research
documented significant operational benefits including
enhanced production efficiency, reduced maintenance
costs, and more effective utilization of safety
professional expertise [82]. These ancillary benefits
contribute substantially to the positive return on
investment observed across all implementation
sites, challenging traditional perceptions of safety
technologies as cost centers rather than strategic
investments. The comprehensive economic analysis
demonstrates that properly implemented safety
systems can contribute to both protective and
productive organizational objectives simultaneously.
The research also identified important limitations
and challenges that must be addressed in future
implementations. The differential performance across
hazard categories highlights the need for customized
monitoring approaches based on facility-specific
risk profiles [83]. The integration challenges with
legacy control systems underscore the importance
of comprehensive compatibility assessment during
planning stages. The privacy considerations
surrounding worker monitoring require thoughtful
policies balancing safety objectives with legitimate
workforce concerns.
Despite these challenges, the overall performance
improvements observed across diverse manufacturing
environments provide compelling evidence for the

transformative potential of digital twin technologies in
industrial safety applications. The SCDT framework
demonstrates that properly implemented digital safety
systems can address many limitations of conventional
approaches, particularly regarding predictive
capabilities, system integration, and contextual
awareness [84]. As manufacturing environments
become increasingly complex and dynamic, the
adaptive monitoring capabilities provided by digital
twin technologies offer a promising path toward more
resilient safety systems.

The future development of safety-focused digital
twins will likely follow several evolutionary paths.
Technical advancements in unsupervised learning
may enhance capabilities for identifying novel
hazard scenarios without predefined models. More
sophisticated approaches to modeling human-system
interactions could improve detection accuracy for
behavioral and organizational factors contributing
to safety incidents [85]. Architectural innovations
incorporating distributed computing paradigms may
enhance system resilience while reducing central
processing requirements. Integration with broader
operational technology ecosystems could create more
comprehensive digital enterprise architectures where
safety considerations are embedded within all aspects
of industrial operations.

From a broader perspective, this research contributes
to the evolving understanding of how digital
technologies can enhance organizational capabilities
for managing complex risks. The digital twin
approach represents a paradigm shift from periodic
safety assessments toward continuous, real-time risk
awareness encompassing both physical conditions
and operational decisions [86]. This transition
from episodic to continuous safety management
has profound implications for how organizations
conceptualize and implement safety governance.

As manufacturing organizations navigate increasingly
complex operational environments characterized
by technological integration, workforce evolution,
and intensifying productivity pressures, the ability
to maintain comprehensive safety awareness
becomes increasingly challenging using conventional
approaches. Digital twin technologies offer a
promising pathway toward safety systems that match
this complexity with corresponding sophistication
in monitoring, analysis, and response capabilities.
The findings of this research suggest that properly
implemented digital safety systems can substantially
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enhance risk management capabilities while
simultaneously contributing to operational excellence,
providing compelling justification for wider adoption
across high-risk industrial environments. [87]

Conflicts of Interest
The authors declare that they have no conflicts of
interest.

Acknowledgement
This work was supported without any funding.

References
[1] K. B. Fillingim, R. O. Nwaeri, C. J. J. Paredis,

D. W. Rosen, and K. Fu, “Examining the effect of
design for additive manufacturing rule presentation
on part redesign quality,” Journal of Engineering
Design, vol. 31, no. 8, pp. 427–460, Jul. 9, 2020. doi:
10.1080/09544828.2020.1789569.

[2] P. J. Scott, V. Meenakshisundaram, M. Hegde, et al.,
“3d printing latex: A route to complex geometries
of high molecular weight polymers,” ACS applied
materials & interfaces, vol. 12, no. 9, pp. 10 918–10 928,
Feb. 20, 2020. doi: 10.1021/acsami.9b19986.

[3] W. Yang, Z. Wang, T. Yang, et al., “Exploration
of the underlying space in microscopic images
via deep learning for additively manufactured
piezoceramics.,” ACS applied materials & interfaces,
vol. 13, no. 45, pp. 53 439–53 453, Sep. 1, 2021. doi:
10.1021/acsami.1c12945.

[4] P. Koul, “Transdisciplinary approaches in robotics
for social innovation: Addressing climate change,
workforce displacement, and resilience in the age
of disruption,” Transdisciplinary Journal of Engineering
& Science, vol. 16, 2025.

[5] Y. Thimont and S. LeBlanc, “The impact of
thermoelectric leg geometries on thermal resistance
and power output,” Journal of Applied Physics, vol. 126,
no. 9, pp. 095 101–, Sep. 3, 2019. doi: 10 . 1063 / 1 .
5115044.

[6] P. J. Diemer, A. F. Harper, M. R. Niazi, et
al., “Laser-printed organic thin-film transistors,”
Advanced Materials Technologies, vol. 2, no. 11,
pp. 1 700 167–, Sep. 20, 2017. doi: 10 . 1002 / admt .
201700167.

[7] M. K. Alazzawi, S. S. Kondapalli, and R. A. Haber,
“Photocurable alumina and silver suspensions:
Cure depth in highly agglomerated and dispersed
systems,” Journal of Materials Research, vol. 36, no. 21,
pp. 4275–4286, Sep. 29, 2021. doi: 10.1557/s43578-021-
00398-w.

[8] L. Li, L. Yan, C. Zeng, and F. W. Liou, “An efficient
predictive modeling for simulating part-scale
residual stress in laser metal deposition process,”
The International Journal of Advanced Manufacturing

Technology, vol. 114, no. 5, pp. 1819–1832, Apr. 3,
2021. doi: 10.1007/s00170-021-07005-6.

[9] S. Khanna and S. Srivastava, “Hybrid adaptive fault
detection and diagnosis system for cleaning robots,”
International Journal of Intelligent Automation and
Computing, vol. 7, no. 1, pp. 1–14, 2024.

[10] F. Tettey, S. K. Parupelli, and S. Desai, “A review
of biomedical devices: Classification, regulatory
guidelines, human factors, software as a medical
device, and cybersecurity,” Biomedical Materials &
Devices, vol. 2, no. 1, pp. 316–341, Aug. 1, 2023. doi:
10.1007/s44174-023-00113-9.

[11] M. Oudich, N. J. Gerard, Y. Deng, and Y. Jing,
“Tailoring structure-borne sound through bandgap
engineering in phononic crystals and metamaterials:
A comprehensive review,” Advanced Functional
Materials, vol. 33, no. 2, Nov. 18, 2022. doi: 10.1002/
adfm.202206309.

[12] F. F. P. Evaristo, P. J. Murtha, L. M. Hall, and
J. Sampath, “Ionomer interfacial behavior from
molecular dynamics simulations: Impact of ion
content on interfacial structure and mixing,”
Macromolecules, vol. 56, no. 23, pp. 9888–9895,
Nov. 23, 2023. doi: 10.1021/acs.macromol.3c01186.

[13] L. Yan, W. Li, X. Chen, et al., “Simulation of cooling
rate effects on ti–48al–2cr–2nb crack formation
in direct laser deposition,” JOM, vol. 69, no. 3,
pp. 586–591, Dec. 1, 2016. doi: 10.1007/s11837-016-
2211-8.

[14] J. Geng, I. C. Nlebedim, M. F. Besser, E. Simsek,
and R. T. Ott, “Bulk combinatorial synthesis
and high throughput characterization for rapid
assessment of magnetic materials: Application of
laser engineered net shaping (lens™),” JOM, vol. 68,
no. 7, pp. 1972–1977, Apr. 15, 2016. doi: 10 . 1007 /
s11837-016-1918-x.

[15] C. Zeng, H. Ding, U. Bhandari, and S. M. Guo,
“Design of crack-free laser additive manufactured
inconel 939 alloy driven by computational
thermodynamics method,” MRS Communications,
vol. 12, no. 5, pp. 844–849, Sep. 9, 2022. doi:
10.1557/s43579-022-00253-x.

[16] T. Wiest, C. C. Seepersad, and M. R. Haberman,
“Robust design of an asymmetrically absorbing
willis acoustic metasurface subject to
manufacturing-induced dimensional variations.,”
The Journal of the Acoustical Society of America,
vol. 151, no. 1, pp. 216–231, Jan. 1, 2022. doi:
10.1121/10.0009162.

[17] J. Pegues, M. Roach, and N. Shamsaei, “Effects of
postprocess thermal treatments on static and cyclic
deformation behavior of additively manufactured
austenitic stainless steel,” JOM, vol. 72, no. 3,
pp. 1355–1365, Jan. 2, 2020. doi: 10.1007/s11837-019-
03983-x.

[18] A. Chuang and J. Erlebacher, “Challenges and
opportunities for integrating dealloying methods
into additive manufacturing.,” Materials (Basel,

15

https://doi.org/10.1080/09544828.2020.1789569
https://doi.org/10.1021/acsami.9b19986
https://doi.org/10.1021/acsami.1c12945
https://doi.org/10.1063/1.5115044
https://doi.org/10.1063/1.5115044
https://doi.org/10.1002/admt.201700167
https://doi.org/10.1002/admt.201700167
https://doi.org/10.1557/s43578-021-00398-w
https://doi.org/10.1557/s43578-021-00398-w
https://doi.org/10.1007/s00170-021-07005-6
https://doi.org/10.1007/s44174-023-00113-9
https://doi.org/10.1002/adfm.202206309
https://doi.org/10.1002/adfm.202206309
https://doi.org/10.1021/acs.macromol.3c01186
https://doi.org/10.1007/s11837-016-2211-8
https://doi.org/10.1007/s11837-016-2211-8
https://doi.org/10.1007/s11837-016-1918-x
https://doi.org/10.1007/s11837-016-1918-x
https://doi.org/10.1557/s43579-022-00253-x
https://doi.org/10.1121/10.0009162
https://doi.org/10.1007/s11837-019-03983-x
https://doi.org/10.1007/s11837-019-03983-x


Transactions on Automation in Transportation, Smart Mobility, and Urban Systems

Switzerland), vol. 13, no. 17, pp. 3706–, Aug. 21, 2020.
doi: 10.3390/ma13173706.

[19] K. Ramesh, A. Stickle, and J. Kimberley, “Rocks,
shocks and asteroids, and some interesting research
directions in mechanics,” Experimental Mechanics,
vol. 57, no. 8, pp. 1149–1159, Aug. 11, 2017. doi: 10.
1007/s11340-017-0324-9.

[20] S. Keller, M. Stein, and O. Ilic, “Material extrusion
on an ultrasonic air bed for 3d printing,” Journal of
Vibration and Acoustics, vol. 145, no. 6, Sep. 27, 2023.
doi: 10.1115/1.4063214.

[21] U. Daalkhaijav, O. D. Yirmibesoglu, S. Walker, and
Y. Menguc, “Rheological modification of liquid
metal for additive manufacturing of stretchable
electronics,” Advanced Materials Technologies, vol. 3,
no. 4, pp. 1 700 351–, Feb. 8, 2018. doi: 10.1002/admt.
201700351.

[22] A. E. Gongora, B. Xu, W. Perry, et al., “A bayesian
experimental autonomous researcher for mechanical
design.,” Science advances, vol. 6, no. 15, eaaz1708–,
Apr. 10, 2020. doi: 10.1126/sciadv.aaz1708.

[23] K. Nithyanandam and P. Singh, “Transient thermal
performance of phase-change material infused in
cellular materials based on different unit cell
topologies,” ASME Journal of Heat and Mass Transfer,
vol. 146, no. 1, Oct. 18, 2023. doi: 10.1115/1.4063354.

[24] Z. Qin, G. S. Jung, M. J. Kang, and M. J. Buehler,
“The mechanics and design of a lightweight
three-dimensional graphene assembly,” Science
advances, vol. 3, no. 1, e1601536–, Jan. 6, 2017. doi:
10.1126/sciadv.1601536.

[25] Y. Xu, N. Buettner, A.-T. Akono, and P. Guo,
“Fabrication of fiber-reinforced composites via
immersed electrohydrodynamic direct writing in
polymer gels,” MRS Communications, vol. 13, no. 6,
pp. 1038–1045, Jul. 24, 2023. doi: 10.1557/s43579-023-
00399-2.

[26] P. Koul, “Green manufacturing in the age of smart
technology: A comprehensive review of sustainable
practices and digital innovations,” Journal of Materials
and Manufacturing, vol. 4, no. 1, pp. 1–20, 2025.

[27] K. Gandha, M. P. Paranthaman, B. C. Sales, et al.,
“3d printing of anisotropic sm–fe–n nylon bonded
permanent magnets,” Engineering Reports, vol. 3,
no. 12, Nov. 17, 2021. doi: 10.1002/eng2.12478.

[28] V. Saygin, K. Snapp, A. E. Gongora, R. Kolaghassi,
and K. A. Brown, “Mechanical consequences of
oxygen inhibition in vat polymerization,” Advanced
Materials Technologies, vol. 8, no. 12, Apr. 5, 2023. doi:
10.1002/admt.202202022.

[29] Y. Guo, M. I. N. Rosa, M. Gupta, et al., “Minimal
surface-based materials for topological elastic wave
guiding,” Advanced Functional Materials, vol. 32,
no. 30, May 12, 2022. doi: 10.1002/adfm.202204122.

[30] S. Kulkarni, F. Zhao, I. C. Nlebedim, R. Fredette,
and M. P. Paranthaman, “Comparative life cycle
assessment of injection molded and big area additive
manufactured ndfeb bonded permanent magnets,”

Journal of Manufacturing Science and Engineering,
vol. 145, no. 5, Jan. 19, 2023. doi: 10.1115/1.4056489.

[31] B. James and H. A. Pierson, “Modeling and
simulation of industrial waterjet stripping for
complex geometries,” The International Journal of
Advanced Manufacturing Technology, vol. 105, no. 5,
pp. 2431–2446, Oct. 30, 2019. doi: 10.1007/s00170-019-
04405-7.

[32] R. B. Gottwald, R. J. Griffiths, D. T. Petersen, M. E. J.
Perry, and H. Z. Yu, “Solid-state metal additive
manufacturing for structural repair,” Accounts of
Materials Research, vol. 2, no. 9, pp. 780–792, Aug. 12,
2021. doi: 10.1021/accountsmr.1c00098.

[33] S. Bhat, “Leveraging 5g network capabilities for smart
grid communication,” Journal of Electrical Systems,
vol. 20, no. 2, pp. 2272–2283, 2024.

[34] Y. Shmueli, Y.-C. Lin, S. Lee, et al., “In situ
time-resolved x-ray scattering study of isotactic
polypropylene in additive manufacturing,” ACS
applied materials & interfaces, vol. 11, no. 40,
pp. 37 112–37 120, Sep. 26, 2019. doi: 10.1021/acsami.
9b12908.

[35] M. Mahmoudi, S. R. Burlison, S. C. Moreno, and M.
Minary-Jolandan, “Additive-free and support-free
3d printing of thermosetting polymers with isotropic
mechanical properties.,” ACS applied materials &
interfaces, vol. 13, no. 4, pp. 5529–5538, Jan. 21, 2021.
doi: 10.1021/acsami.0c19608.

[36] P. Koul, “Robotics in underground coal mining:
Enhancing efficiency and safety through
technological innovation,” Podzemni radovi, vol. 1,
no. 45, pp. 1–26, 2024.

[37] X. Mu, J. K. Sahoo, P. Cebe, and D. L. Kaplan,
“Photo-crosslinked silk fibroin for 3d printing.,”
Polymers, vol. 12, no. 12, pp. 2936–, Dec. 9, 2020. doi:
10.3390/polym12122936.

[38] B. B. Patel, D. J. Walsh, H. Kim, et al., “Tunable
structural color of bottlebrush block copolymers
through direct-write 3d printing from solution,”
Science advances, vol. 6, no. 24, eaaz7202–, Jun. 10,
2020. doi: 10.1126/sciadv.aaz7202.

[39] H. Xu, S. Chen, R. Hu, et al., “Continuous vat
photopolymerization for optical lens fabrication.,”
Small (Weinheim an der Bergstrasse, Germany), vol. 19,
no. 40, e2300517–, May 28, 2023. doi: 10.1002/smll .
202300517.

[40] K. Christensen, B. Davis, Y. Jin, andY.Huang, “Effects
of printing-induced interfaces on localized strain
within 3d printed hydrogel structures.,” Materials
science & engineering. C, Materials for biological
applications, vol. 89, pp. 65–74, Mar. 17, 2018. doi:
10.1016/j.msec.2018.03.014.

[41] D. J. Littlewood,M. L. Parks, J. T. Foster, J. A.Mitchell,
and P. Diehl, “The peridigm meshfree peridynamics
code,” Journal of Peridynamics and Nonlocal Modeling,
vol. 6, no. 1, pp. 118–148, May 8, 2023. doi: 10.1007/
s42102-023-00100-0.

[42] N. E. Zander, J. H. Park, Z. R. Boelter, and
M. Gillan, “Recycled cellulose polypropylene

16

https://doi.org/10.3390/ma13173706
https://doi.org/10.1007/s11340-017-0324-9
https://doi.org/10.1007/s11340-017-0324-9
https://doi.org/10.1115/1.4063214
https://doi.org/10.1002/admt.201700351
https://doi.org/10.1002/admt.201700351
https://doi.org/10.1126/sciadv.aaz1708
https://doi.org/10.1115/1.4063354
https://doi.org/10.1126/sciadv.1601536
https://doi.org/10.1557/s43579-023-00399-2
https://doi.org/10.1557/s43579-023-00399-2
https://doi.org/10.1002/eng2.12478
https://doi.org/10.1002/admt.202202022
https://doi.org/10.1002/adfm.202204122
https://doi.org/10.1115/1.4056489
https://doi.org/10.1007/s00170-019-04405-7
https://doi.org/10.1007/s00170-019-04405-7
https://doi.org/10.1021/accountsmr.1c00098
https://doi.org/10.1021/acsami.9b12908
https://doi.org/10.1021/acsami.9b12908
https://doi.org/10.1021/acsami.0c19608
https://doi.org/10.3390/polym12122936
https://doi.org/10.1126/sciadv.aaz7202
https://doi.org/10.1002/smll.202300517
https://doi.org/10.1002/smll.202300517
https://doi.org/10.1016/j.msec.2018.03.014
https://doi.org/10.1007/s42102-023-00100-0
https://doi.org/10.1007/s42102-023-00100-0


Transactions on Automation in Transportation, Smart Mobility, and Urban Systems

composite feedstocks for material extrusion
additive manufacturing.,” ACS omega, vol. 4,
no. 9, pp. 13 879–13 888, Aug. 15, 2019. doi:
10.1021/acsomega.9b01564.

[43] R. Zhang, K. M. Nagaraja, N. Bian, et al.,
“Experimental studies on fabricating functionally
gradient material of stainless steel 316l-inconel 718
through hybrid manufacturing: Directed energy
deposition and machining,” The International
Journal of Advanced Manufacturing Technology,
vol. 120, no. 11-12, pp. 7815–7826, May 4, 2022. doi:
10.1007/s00170-022-09304-y.

[44] J. Strube, M. Schram, S. Rustam, Z. C. Kennedy, and
T. Varga, “Identifying build orientation of 3d-printed
materials using convolutional neural networks,”
Statistical Analysis and Data Mining: The ASA Data
Science Journal, vol. 14, no. 6, pp. 575–582, Jan. 7, 2021.
doi: 10.1002/sam.11497.

[45] R. Welch, D. Hobbis, A. J. Birnbaum, G. S. Nolas,
and S. LeBlanc, “Nano- and micro-structures formed
during laser processing of selenium doped bismuth
telluride,” Advanced Materials Interfaces, vol. 8, no. 15,
pp. 2 100 185–, Jul. 2, 2021. doi: 10 . 1002 / admi .
202100185.

[46] D. M. French and D. Shiffler, “High power
microwave source with a three dimensional
printed metamaterial slow-wave structure,”
The Review of scientific instruments, vol. 87,
no. 5, pp. 053 308–053 308, May 1, 2016. doi:
10.1063/1.4950904.

[47] A. Afrouzian, K. D. Traxel, and A. Bandyopadhyay,
“Martian regolith—ti6al4v composites via additive
manufacturing,” International Journal of Applied
Ceramic Technology, vol. 19, no. 6, pp. 2998–3006,
Jul. 29, 2022. doi: 10.1111/ijac.14136.

[48] J. T. Toombs, I. K. Shan, and H. K. Taylor, “Ethyl
cellulose-based thermoreversible organogel
photoresist for sedimentation-free volumetric
additive manufacturing.,” Macromolecular rapid
communications, vol. 44, no. 7, e2200872–, Feb. 22,
2023. doi: 10.1002/marc.202200872.

[49] G. A. Appuhamillage, N. Chartrain,
V. Meenakshisundaram, K. D. Feller, C. B. Williams,
and T. E. Long, “110th anniversary: Vat
photopolymerization-based additive manufacturing:
Current trends and future directions in materials
design,” Industrial & Engineering Chemistry Research,
vol. 58, no. 33, pp. 15 109–15 118, Jul. 24, 2019. doi:
10.1021/acs.iecr.9b02679.

[50] M. Roy, R. Yavari, C. Zhou, O. Wodo, and
P. K. Rao, “Prediction and experimental validation
of part thermal history in the fused filament
fabrication additive manufacturing process,” Journal
of Manufacturing Science and Engineering, vol. 141,
no. 12, Oct. 16, 2019. doi: 10.1115/1.4045056.

[51] C. Zhang, A. Banerjee, A. Hoe, et al., “Design
for laser powder bed additive manufacturing of
alsi12 periodic mesoscale lattice structures,” The
International Journal of Advanced Manufacturing

Technology, vol. 113, no. 11, pp. 3599–3612, Mar. 8,
2021. doi: 10.1007/s00170-021-06817-w.

[52] P. Koul, P. Bhat, A. Mishra, C. Malhotra, and
D. B. Baskar, “Design of miniature vapour
compression refrigeration system for electronics
cooling,” International Journal of Multidisciplinary
Research in Arts, Science and Technology, vol. 2, no. 9,
pp. 18–31, 2024.

[53] Q. Wang, J. Li, A. R. Nassar, E. W. Reutzel, and
W. F. Mitchell, “Model-based feedforward control of
part height in directed energy deposition.,” Materials
(Basel, Switzerland), vol. 14, no. 2, pp. 337–, Jan. 11,
2021. doi: 10.3390/ma14020337.

[54] L. El Iysaouy, M. Lahbabi, K. Bhagat, et al.,
“Performance enhancements and modelling of
photovoltaic panel configurations during partial
shading conditions,” Energy Systems, pp. 1–22, 2023.

[55] D. M. Soares, Z. Ren, S. B. Mujib, et al., “Additive
manufacturing of electrochemical energy
storage systems electrodes,” Advanced Energy
and Sustainability Research, vol. 2, no. 5, pp. 2 000 111–,
Mar. 26, 2021. doi: 10.1002/aesr.202000111.

[56] L. Meng and J. Zhang, “Process design of laser
powder bed fusion of stainless steel using a
gaussian process-based machine learning model,”
JOM, vol. 72, no. 1, pp. 420–428, Sep. 23, 2019. doi:
10.1007/s11837-019-03792-2.

[57] G. Miao, M. Moghadasi, M. Li, Z. Pei, and C. Ma,
“Binder jetting additive manufacturing: Powder
packing in shell printing,” Journal of Manufacturing
and Materials Processing, vol. 7, no. 1, pp. 4–4, Dec. 27,
2022. doi: 10.3390/jmmp7010004.

[58] J. Liu, C. Liu, Y. Bai, P. K. Rao, C. B. Williams, and
Z. J. Kong, “Layer-wise spatial modeling of porosity
in additive manufacturing,” IISE Transactions, vol. 51,
no. 2, pp. 109–123, Oct. 4, 2018. doi: 10.1080/24725854.
2018.1478169.

[59] D. X. Luong, A. Subramanian, G. A. L. Silva, et
al., “Laminated object manufacturing of 3d-printed
laser-induced graphene foams,” Advanced materials
(Deerfield Beach, Fla.), vol. 30, no. 28, pp. 1 707 416–,
May 29, 2018. doi: 10.1002/adma.201707416.

[60] S. Lee, Z. Zhang, and G. X. Gu, “Deep learning
accelerated design of mechanically efficient
architected materials.,” ACS applied materials &
interfaces, vol. 15, no. 18, pp. 22 543–22 552, Apr. 27,
2023. doi: 10.1021/acsami.3c02746.

[61] A. Chandrasekhar, T. Kumar, and K. Suresh,
“Build optimization of fiber-reinforced additively
manufactured components,” Structural and
Multidisciplinary Optimization, vol. 61, no. 1,
pp. 77–90, Jul. 24, 2019. doi: 10 . 1007 / s00158 - 019 -
02346-z.

[62] R. Prabhu, S. R. Miller, T. W. Simpson, and
N. A. Meisel, “But will it build? assessing student
engineering designers’ use of design for additive
manufacturing considerations in design outcomes,”
Journal of Mechanical Design, vol. 142, no. 9,
pp. 092 001–, Mar. 9, 2020. doi: 10.1115/1.4046071.

17

https://doi.org/10.1021/acsomega.9b01564
https://doi.org/10.1007/s00170-022-09304-y
https://doi.org/10.1002/sam.11497
https://doi.org/10.1002/admi.202100185
https://doi.org/10.1002/admi.202100185
https://doi.org/10.1063/1.4950904
https://doi.org/10.1111/ijac.14136
https://doi.org/10.1002/marc.202200872
https://doi.org/10.1021/acs.iecr.9b02679
https://doi.org/10.1115/1.4045056
https://doi.org/10.1007/s00170-021-06817-w
https://doi.org/10.3390/ma14020337
https://doi.org/10.1002/aesr.202000111
https://doi.org/10.1007/s11837-019-03792-2
https://doi.org/10.3390/jmmp7010004
https://doi.org/10.1080/24725854.2018.1478169
https://doi.org/10.1080/24725854.2018.1478169
https://doi.org/10.1002/adma.201707416
https://doi.org/10.1021/acsami.3c02746
https://doi.org/10.1007/s00158-019-02346-z
https://doi.org/10.1007/s00158-019-02346-z
https://doi.org/10.1115/1.4046071


Transactions on Automation in Transportation, Smart Mobility, and Urban Systems

[63] D. G. Spear and A. N. Palazotto, “Investigation and
statistical modeling of the mechanical properties of
additively manufactured lattices.,”Materials (Basel,
Switzerland), vol. 14, no. 14, pp. 3962–, Jul. 15, 2021.
doi: 10.3390/ma14143962.

[64] A. T. L. Tan, S. Nagelberg, E. Chang-Davidson, et
al., “In-plane direct-write assembly of iridescent
colloidal crystals,” Small (Weinheim an der Bergstrasse,
Germany), vol. 16, no. 4, pp. 1 905 519–, Dec. 29, 2019.
doi: 10.1002/smll.201905519.

[65] M. N. Bello, A. Williams, I. Shancita, et al.,
“Synthesis and characterization of polymeric films
with stress-altered aluminum particle fillers,” Journal
of Materials Science, vol. 55, no. 29, pp. 14 229–14 242,
Jul. 16, 2020. doi: 10.1007/s10853-020-05017-3.

[66] S. Ji and M. Guvendiren, “3d printed wavy scaffolds
enhance mesenchymal stem cell osteogenesis.,”
Micromachines, vol. 11, no. 1, pp. 31–, Dec. 25, 2019.
doi: 10.3390/mi11010031.

[67] M. S. Qureshi, A. Aljarbouh, M. Fayaz, M. B.
Qureshi, W. K. Mashwani, and J. Khan, “An
efficient methodology for water supply pipeline
risk index prediction for avoiding accidental losses,”
International Journal of Advanced Computer Science and
Applications, vol. 11, no. 5, 2020.

[68] M. Zeng, H. Xie, M. Saeidi-Javash, et al., “Scalable
nanomanufacturing of chalcogenide inks: A case
study on thermoelectric v–vi nanoplates,” Journal of
Materials Chemistry A, vol. 9, no. 39, pp. 22 555–22 562,
Oct. 12, 2021. doi: 10.1039/d1ta05858d.

[69] G. Agarwal and A. M. Dongare, “Modeling the
thermodynamic behavior and shock response
of ti systems at the atomic scales and the
mesoscales,” Journal ofMaterials Science, vol. 52, no. 18,
pp. 10 853–10 870, Jun. 6, 2017. doi: 10.1007/s10853-
017-1243-y.

[70] S. Khanna and S. Srivastava, “Conceptualizing a life
cycle assessment (lca) model for cleaning robots,”
International Journal of Responsible Artificial Intelligence,
vol. 13, no. 9, pp. 20–37, 2023.

[71] T. Tang, B. Ahire, and X. Li, “Scalable multi-material
additive manufacturing of bioinspired polymeric
material with metallic structures via electrically
assisted stereolithography,” Journal of Manufacturing
Science and Engineering, vol. 145, no. 1, Oct. 13, 2022.
doi: 10.1115/1.4055793.

[72] N. Somers, A. Montón, E. Özmen, and M. D. Losego,
“Infrared irradiation to drive phosphate condensation
as a route to direct additive manufacturing of oxide
ceramics,” Journal of the American Ceramic Society,
vol. 107, no. 1, pp. 36–46, Sep. 5, 2023. doi: 10.1111/
jace.19418.

[73] M. A. T. Arango, D. T. Cipollone, L. O. Grant,
D. Korakakis, and K. A. Sierros, “Continuous-flow
direct writing of hybrid tio2 flexible photo-electrodes:
Processing, microstructure and functionality
interrelations,” MRS Advances, vol. 2, no. 18,
pp. 1021–1028, Feb. 27, 2017. doi: 10.1557/adv.2017.238.

[74] P. M. Cordero, J. Mireles, S. Ridwan, and R. B.Wicker,
“Evaluation ofmonitoringmethods for electron beam
melting powder bed fusion additive manufacturing
technology,”Progress in AdditiveManufacturing, vol. 2,
no. 1, pp. 1–10, Dec. 1, 2016. doi: 10.1007/s40964-016-
0015-6.

[75] Z. Jin, D. D. Lim, X. Zhao, M. Mamunuru,
S. Roham, and G. X. Gu, “Machine learning
enabled optimization of showerhead design for
semiconductor deposition process,” Journal of
Intelligent Manufacturing, vol. 35, no. 2, pp. 925–935,
Feb. 15, 2023. doi: 10.1007/s10845-023-02082-8.

[76] J. Goodwin and C. Saldaña, “Vision-based
localization for cooperative robot-cnc hybrid
manufacturing,” The International Journal of
Advanced Manufacturing Technology, vol. 126, no. 1-2,
pp. 241–258, Feb. 24, 2023. doi: 10.1007/s00170-023-
11009-9.

[77] P. Wang, B. Barnes, Z. Huang, Z. Wang, M. Zheng,
and Y. Wang, “Beyond color: The new carbon ink.,”
Advanced materials (Deerfield Beach, Fla.), vol. 33,
no. 46, pp. 2 005 890–, May 2, 2021. doi: 10.1002/adma.
202005890.

[78] J. R. Tempelman, M. K. Mudunuru, S. Karra, et al.,
“Uncovering acoustic signatures of pore formation in
laser powder bed fusion,” The International Journal of
Advanced Manufacturing Technology, vol. 130, no. 5-6,
pp. 3103–3114, Dec. 28, 2023. doi: 10.1007/s00170-023-
12771-6.

[79] R. Prabhu, S. R. Miller, T. W. Simpson, and N. A.
Meisel, “Teaching design freedom: Understanding
the effects of variations in design for additive
manufacturing education on students’ creativity,”
Journal of Mechanical Design, vol. 142, no. 9,
pp. 094 501–, Mar. 6, 2020. doi: 10.1115/1.4046065.

[80] A. W. Marshall and S. R. Kalidindi, “Autonomous
development of a machine-learning model for the
plastic response of two-phase composites from
micromechanical finite element models,” JOM,
vol. 73, no. 7, pp. 2085–2095, May 13, 2021. doi: 10.
1007/s11837-021-04696-w.

[81] S. Park, Y. Li, M. McLamb, B. Norton, G. D. Boreman,
and T. Hofmann, “Highly localized defect mode in
polymer-based thz photonic crystals fabricated using
stereolithography,” Journal of Infrared, Millimeter, and
Terahertz Waves, vol. 41, no. 7, pp. 825–833, Jun. 16,
2020. doi: 10.1007/s10762-020-00709-y.

[82] A. Neils, L. Dong, and H. Wadley, “The small-scale
limits of electron beam melt additive manufactured
ti–6al–4v octet-truss lattices,” AIP Advances, vol. 12,
no. 9, Sep. 1, 2022. doi: 10.1063/5.0094155.

[83] P. Tyagi, D. Brent, T. A. Saunders, et al., “Roughness
reduction of additively manufactured steel by
electropolishing,” The International Journal of
Advanced Manufacturing Technology, vol. 106, no. 3,
pp. 1337–1344, Dec. 11, 2019. doi: 10.1007/s00170-019-
04720-z.

[84] R. Hoffman, S. Hinnebusch, S. Raikar, A. C. To, andO.
Hildreth, “Support thickness, pitch, and applied bias

18

https://doi.org/10.3390/ma14143962
https://doi.org/10.1002/smll.201905519
https://doi.org/10.1007/s10853-020-05017-3
https://doi.org/10.3390/mi11010031
https://doi.org/10.1039/d1ta05858d
https://doi.org/10.1007/s10853-017-1243-y
https://doi.org/10.1007/s10853-017-1243-y
https://doi.org/10.1115/1.4055793
https://doi.org/10.1111/jace.19418
https://doi.org/10.1111/jace.19418
https://doi.org/10.1557/adv.2017.238
https://doi.org/10.1007/s40964-016-0015-6
https://doi.org/10.1007/s40964-016-0015-6
https://doi.org/10.1007/s10845-023-02082-8
https://doi.org/10.1007/s00170-023-11009-9
https://doi.org/10.1007/s00170-023-11009-9
https://doi.org/10.1002/adma.202005890
https://doi.org/10.1002/adma.202005890
https://doi.org/10.1007/s00170-023-12771-6
https://doi.org/10.1007/s00170-023-12771-6
https://doi.org/10.1115/1.4046065
https://doi.org/10.1007/s11837-021-04696-w
https://doi.org/10.1007/s11837-021-04696-w
https://doi.org/10.1007/s10762-020-00709-y
https://doi.org/10.1063/5.0094155
https://doi.org/10.1007/s00170-019-04720-z
https://doi.org/10.1007/s00170-019-04720-z


Transactions on Automation in Transportation, Smart Mobility, and Urban Systems

effects on the carbide formation, surface roughness,
andmaterial removal of additivelymanufactured 316
l stainless steel,” JOM, vol. 72, no. 12, pp. 4254–4263,
Oct. 26, 2020. doi: 10.1007/s11837-020-04422-y.

[85] Y. Zhang and A. Bandyopadhyay, “Influence of
compositionally graded interface on microstructure
and compressive deformation of 316l stainless steel
to al12si aluminum alloy bimetallic structures.,”
ACS applied materials & interfaces, vol. 13, no. 7,
pp. 9174–9185, Feb. 11, 2021. doi: 10 . 1021 / acsami .
0c21478.

[86] C. S. Verma, B. Rankouhi, and K. Suresh, “A
combinatorial approach for constructing lattice
structures,” Journal of Mechanical Design, vol. 142,
no. 4, Nov. 11, 2019. doi: 10.1115/1.4044521.

[87] L. Wang, P. Du, and R. Jin, “Moss-multi-modal best
subset modeling in smart manufacturing.,” Sensors
(Basel, Switzerland), vol. 21, no. 1, pp. 243–, Jan. 1,
2021. doi: 10.3390/s21010243.

19

https://doi.org/10.1007/s11837-020-04422-y
https://doi.org/10.1021/acsami.0c21478
https://doi.org/10.1021/acsami.0c21478
https://doi.org/10.1115/1.4044521
https://doi.org/10.3390/s21010243

	Introduction
	Background and Related Work
	System Architecture and Methodology
	Predictive Risk Assessment
	Implementation and Deployment
	Results and Performance Analysis
	Discussion and Practical Implications
	Future Research Directions
	Conclusion

