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Abstract
Achieving real-time data synchronization in complex
environments such as subterranean corridors is
critical for advancing sustainable operations and
ensuring safety in underground infrastructure.
The integration of Vehicle-to-Everything (V2X)
sensing technologies with aerial imagery presents
a promising avenue for augmenting situational
awareness and operational efficiency. This paper
investigates the framework and methodologies
for synchronizing V2X data streams, including
vehicular telemetry, environmental sensors, and
communication networks, with high-resolution
aerial imagery captured by unmanned aerial
vehicles (UAVs). By leveraging edge computing,
distributed data fusion, and advanced temporal
alignment algorithms, the proposed system
minimizes latency and ensures consistent data
accuracy. The synchronization process is optimized
to address challenges such as signal degradation,
occlusions, and resource constraints in subterranean
environments. The resulting system is demonstrated
to improve navigation, hazard detection, and
resource allocation within these confined
spaces. This research contributes to the body of
knowledge by proposing a scalable, energy-efficient
framework that facilitates sustainable operations
in underground corridors, aligning with goals
for environmental conservation and operational
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resilience. The findings underscore the potential
of integrating V2X and aerial imagery to transform
subterranean infrastructure management while
providing a pathway for future advancements in
autonomous navigation and intelligent monitoring
systems.
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1 Introduction
The increasing complexity of subterranean corridors,
encompassing a wide range of environments such
as tunnels, mines, and underground transportation
networks, has catalyzed a growing demand for
innovative technological solutions aimed at enhancing
both operational efficiency and safety. As these
environments expand to accommodate escalating
urbanization, industrial activity, and strategic
infrastructure projects, they also introduce a host of
challenges that necessitate advanced methodologies
for monitoring and management. Among the most
promising advancements in this field is the integration
of cutting-edge sensing technologies, including
Vehicle-to-Everything (V2X) communication systems
and high-resolution aerial imagery captured by
unmanned aerial vehicles (UAVs). Together, these
technologies hold the potential to significantly
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enhance situational awareness by providing a
multidimensional perspective on the subterranean
environment. Specifically, V2X sensing facilitates
seamless communication between vehicles and
infrastructure, enabling the real-time exchange of
critical data, while UAV-based aerial imagery offers
an invaluable bird’s-eye view of spatial layouts and
structural conditions. However, the synchronization
of these heterogeneous data streams is essential to
creating a cohesive and actionable representation of
the subterranean landscape [1].

Subterranean environments are inherently challenging
due to their unique physical and operational
constraints. Low visibility, signal attenuation caused
by dense materials, and limited accessibility all
compound the difficulties of achieving effective
data acquisition and integration. For instance,
the presence of rock strata, concrete walls, and
metallic reinforcements can interfere with wireless
communication signals, diminishing the efficacy of
traditional sensing systems. Furthermore, the confined
nature of these spaces limits the placement of sensors
and restricts the mobility of monitoring equipment,
necessitating highly adaptive and robust solutions.
The integration of V2X communication and aerial
imagery provides a promising avenue for overcoming
these limitations. V2X systems enable vehicles
to share their positional and environmental data
with surrounding infrastructure and other vehicles,
creating a dynamic network of interconnected nodes
[2]. When combined with UAV-derived imagery,
which captures macro-level spatial information, these
technologies can provide a more comprehensive
understanding of the subterranean environment [3].

However, achieving seamless integration and
synchronization of these data streams remains a
critical technical challenge. Traditional approaches
to sensor fusion often rely on predefined models
and algorithms that are ill-suited to the dynamic
and unpredictable conditions of subterranean
environments. For example, the precision of GPS
data, a cornerstone of many navigation systems,
is significantly degraded underground due to the
inability of satellite signals to penetrate dense
materials. This necessitates the use of alternative
localization techniques, such as inertial measurement
units (IMUs) and ultra-wideband (UWB) positioning
systems, whichmust be effectively integratedwithV2X
and aerial data to ensure accuracy. Furthermore, the
timeliness of data processing is a paramount concern,
as delays in synchronizing and analyzing information

can compromise the safety and efficiency of operations.
For instance, in the context of underground mining, a
delayed response to hazardous conditions such as gas
leaks or structural instabilities could have catastrophic
consequences.

In addition to these operational challenges, the
sustainability of subterranean operations has
emerged as a critical consideration in the design
and implementation of sensing systems. The
energy-intensive nature of underground activities,
coupled with the increasing scrutiny of environmental
impacts, underscores the need for technologies that
optimize resource utilization and minimize ecological
footprints. The integration of V2X sensing and aerial
imagery offers several pathways for achieving these
objectives. For example, by providing real-time data
on traffic flow and environmental conditions, V2X
systems can enable more efficient routing of vehicles,
reducing fuel consumption and emissions. Similarly,
UAVs equipped with advanced imaging and analytical
capabilities can monitor structural conditions and
identify potential hazards, reducing the need for
energy-intensive manual inspections. However,
the realization of these benefits depends on the
development of robust synchronization frameworks
that can harmonize the diverse data streams generated
by these technologies.

To illustrate the potential of these integrated
systems, consider the scenario of an underground
transportation network designed to support urban
mobility. Such a network must contend with a variety
of challenges, including high traffic density, limited
ventilation, and the risk of structural degradation over
time. By leveraging V2X communication, vehicles
within the network can share information about
their positions, speeds, and trajectories, enabling
the implementation of adaptive traffic management
systems that optimize flow and reduce congestion. At
the same time, UAVs equipped with high-resolution
cameras and sensors can periodically survey the
network to identify structural vulnerabilities, such
as cracks or water infiltration, that may compromise
safety. The synchronization of these data streams can
provide operators with a unified and dynamic view of
the network, facilitating proactive maintenance and
efficient resource allocation.

Despite these promising applications, the technical
hurdles associated with data synchronization remain
a formidable barrier to widespread adoption. One
of the primary challenges lies in the heterogeneity
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of the data generated by V2X and UAV systems.
V2X communication typically produces structured,
time-stamped data streams that are optimized for
real-time applications, while aerial imagery consists
of unstructured or semi-structured data that require
significant preprocessing and analysis. Bridging
this gap necessitates the development of advanced
algorithms capable of aligning and fusing data from
disparate sources, often in the presence of noise and
uncertainty. Moreover, the computational demands
of these processes must be carefully managed to
ensure that the resulting systems are both scalable and
energy-efficient.

The confluence of V2X sensing and aerial imagery
represents a promising frontier in the enhancement
of subterranean operations, offering the potential to
address long-standing challenges related to visibility,
communication, and accessibility. However, the
successful implementation of these technologies
hinges on the resolution of key technical challenges,
particularly in the realm of data synchronization.
The following sections of this paper will explore
these challenges in greater detail, examining the
state-of-the-art techniques for data integration and
their applicability to subterranean environments.
In doing so, this work aims to contribute to the
development of innovative solutions that can unlock
the full potential of advanced sensing technologies in
these critical settings [4].

In conclusion, the introduction of advanced sensing
technologies such as V2X communication and
UAV-based aerial imagery holds transformative
potential for the management and optimization
of subterranean environments. However, these
technologies must overcome significant challenges,
particularly with regard to data synchronization, to
achieve their full potential. The development of robust
integration frameworks that address these challenges
is essential for advancing the state of the art in
subterranean sensing and ensuring the sustainability
and safety of operations in these complex and dynamic
settings.

This paper explores the design and implementation
of a real-time data synchronization framework
that leverages edge computing and distributed
systems to align V2X and aerial imagery data.
By addressing latency, resource allocation, and
environmental constraints, the proposed system aims
to enhance operational sustainability in subterranean
corridors. The subsequent sections detail the

theoretical framework, synchronization techniques,
and evaluation of the proposed methodology.

2 Theoretical Framework for Data
Synchronization

The proposed theoretical framework for data
synchronization in subterranean environments is
structured around three fundamental components:
temporal alignment, data fusion, and resource
optimization. These components address the
unique challenges posed by the integration of V2X
communication and aerial imagery data, ensuring
seamless synchronization even under the adverse
conditions characteristic of subterranean settings.
The framework incorporates advanced mathematical
models, algorithms, and architectural principles to
deliver robust and efficient synchronization while
accounting for the constraints of these environments.

2.1 Temporal Alignment
Temporal alignment is the cornerstone of the
synchronization process, as it ensures that data
streams originating from V2X sensors and UAV-based
aerial imagery are accurately synchronized despite
disparities in their acquisition rates, network-induced
delays, and varying temporal resolutions. The
temporal alignment process is governed by two
key elements: precise time-stamping and predictive
modeling.

To facilitate time-stamping, each data packet is
annotated with a timestamp ti representing the exact
time of acquisition. However, discrepancies can arise
due to network jitter and variable latencies. To address
this, a predictive model based on linear regression
and Kalman filtering is employed to estimate the true
timestamp t̂i for each data packet. The relationship
can be expressed as follows:

t̂i = ti +∆t,

where ∆t represents the estimated delay, which
is dynamically updated based on observed latency
patterns. The Kalman filter equations for this process
are:

x̂k|k−1 = Ax̂k−1|k−1+Buk, Pk|k−1 = APk−1|k−1A
⊤+Q,

Kk = Pk|k−1H
⊤(HPk|k−1H

⊤+R)−1, x̂k|k = x̂k|k−1+Kk(zk−Hx̂k|k−1),

where x̂ represents the estimated state, P is the error
covariance matrix, A is the state transition matrix,
H is the observation matrix, Q is the process noise
covariance, R is the measurement noise covariance,
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Table 1. Comparative Analysis of V2X and UAV Data Characteristics in Subterranean Environments

Aspect V2X Communication UAV Aerial Imagery
Data Structure Structured,

time-stamped
Unstructured or
semi-structured

Primary Purpose Real-time
communication and
situational awareness

Spatial mapping and
structural monitoring

Challenges Signal attenuation,
low precision in
GPS-deprived areas

High computational
requirements for
processing and analysis
[5]

Advantages Facilitates adaptive
traffic management and
resource optimization

Enables macro-level
environmental
assessments

Table 2. Key Technical Challenges in Data Synchronization for Subterranean Sensing

Challenge Description Potential Solutions
Heterogeneity of
Data

Disparate formats and
structures of V2X and
UAV data

Development of unified
data models and schemas

Latency and
Timeliness

Delays in processing
and synchronizing data
streams

Optimization of real-time
data fusion algorithms

Environmental
Constraints

Low visibility and
signal interference in
subterranean spaces

Use of alternative
localization techniques
(e.g., UWB, IMUs)

Computational
Demands

High resource
requirements for data
analysis and integration

Deployment of edge
computing and distributed
processing

andKk is the Kalman gain. This predictive approach
ensures that temporal misalignments are minimized,
enabling consistent and accurate data integration.

2.2 Data Fusion
Data fusion involves the integration of heterogeneous
data streams fromV2X sensors andUAV-derived aerial
imagery into a unified representation. This process
is essential for robust decision-making in dynamic
subterranean environments. The fusion framework
employs a combination of probabilistic methods,
machine learning algorithms, and physics-based
models to address the unique characteristics of these
data streams.

One of the primary tools for data fusion is the extended
Kalman filter (EKF), which is particularly suited to
nonlinear systems. The state estimation problem is
formulated as:

x̂k = f(x̂k−1) + ωk, zk = h(x̂k) + νk,

where f and h represent the system dynamics and
observation models, respectively, and ωk and νk
are process and measurement noise. By iteratively
updating the state estimate and its associated
uncertainty, the EKF provides a reliable mechanism
for combining V2X and UAV data, even in the presence
of noise and occlusions.

In addition to EKF, Bayesian inference is employed to
quantify uncertainty and incorporate prior knowledge
into the fusion process. Given a prior distribution
p(x) and likelihood function p(z|x), the posterior
distribution p(x|z) is computed as:

p(x|z) = p(z|x)p(x)
p(z)

,

where p(z) is the marginal probability of the
observation. This probabilistic approach enables
the system to handle incomplete or ambiguous data,
enhancing its resilience to challenging subterranean
conditions.
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Deep learning techniques, particularly convolutional
neural networks (CNNs), are also integrated into the
fusion framework to process high-resolution aerial
imagery. CNNs are used to extract spatial features,
such as structural anomalies or environmental hazards,
which are then correlated with V2X data to provide a
comprehensive situational overview. The combined
output is represented as a multidimensional tensor T,
where each element Tijk corresponds to a fused data
point from the ith V2X sensor, jth UAV image, and kth
time step:

T = Fusion(V,U),

where V and U represent the V2X and UAV data
streams, respectively.

2.3 Resource Optimization
The computational and energy demands of real-time
data synchronization are significant, particularly in
the resource-constrained environments typical of
subterranean operations. Resource optimization
is therefore a critical component of the proposed
framework, focusing on minimizing latency, energy
consumption, and computational overhead while
maintaining system performance.

One key strategy for resource optimization is the
deployment of edge computing and distributed
architectures. By offloading intensive computational
tasks to edge nodes located near the data sources, the
framework reduces the burden on central processing
units and minimizes data transmission delays. The
energy efficiency of this approach can be quantified
using the energy-delay product (EDP), defined as:

EDP = E ·D,

where E is the energy consumed and D is the
delay incurred. The optimization objective is to
minimize EDP while ensuring that system constraints
are satisfied.

To further enhance resource efficiency, the framework
incorporates adaptive task scheduling algorithms that
dynamically allocate computational resources based
on workload and environmental conditions. These
algorithms solve the following optimization problem:

min

N∑
i=1

Ei

Ti
, subject to

N∑
i=1

Ti ≤ Tmax,

where Ei and Ti are the energy consumption and
execution time of the ith task, and Tmax is the
maximum allowable time.

2.4 System Resilience and Error Management
The theoretical framework also emphasizes resilience
and error management to ensure reliable operation
under adverse conditions. Mechanisms such as error
correction codes (ECC) and redundancy strategies
are employed to maintain data integrity during
transmission. For instance, Reed-Solomon codes are
used to detect and correct errors in transmitted data,
ensuring that corrupted packets are recovered without
requiring retransmission.

Adaptive algorithms are integrated into the framework
to dynamically adjust system parameters in response
to environmental changes. For example, if signal
degradation is detected, the system can reconfigure
its communication protocols to prioritize low-latency
transmission channels or increase redundancy to
compensate for data loss. These adaptive capabilities
are modeled using reinforcement learning, where the
system learns an optimal policy π∗ that maximizes a
cumulative reward function R:

π∗ = argmax
π

E

[ ∞∑
t=0

γtRt

]
,

where γ is a discount factor and Rt represents the
reward at time t. This approach enables the framework
to proactively address challenges and maintain high
levels of performance.

2.5 Mathematical Integration of Components
The interplay between temporal alignment, data
fusion, and resource optimization is represented
mathematically through a unified objective function F ,
which encapsulates the trade-offs between precision,
timeliness, and resource efficiency:

F = w1P + w2T + w3R,

where P represents precision (e.g., alignment
accuracy), T denotes timeliness (e.g., latency),
and R signifies resource efficiency (e.g., energy
consumption). The weights w1, w2, w3 are determined
based on the relative importance of each objective in a
given application context. The optimization problem
is then formulated as:

minF, subject to P ≥ Pmin, T ≤ Tmax, R ≤ Rmax,

where Pmin, Tmax, and Rmax are application-specific
constraints.
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Table 3. Key Components of the Proposed Synchronization Framework

Component Objective Techniques Employed
Temporal Alignment Synchronize data streams

with precision
Time-stamping,
Kalman filtering,
predictive modeling

Data Fusion Integrate heterogeneous
data into a unified
representation

Extended Kalman filter,
Bayesian inference,
deep learning

Resource
Optimization

Minimize computational
and energy overhead

Edge computing,
distributed
architectures, task
scheduling

System Resilience Ensure reliable operation
under adverse conditions

Error correction codes,
adaptive algorithms

Table 4. Performance Metrics for Evaluating Synchronization Frameworks

Metric Definition Evaluation Method
Alignment Precision Accuracy of temporal

synchronization
Mean absolute
error (MAE) of
timestamps

Fusion Accuracy Consistency of
integrated data streams

Root mean square
error (RMSE) of
fused estimates

Latency Time required for
data processing and
synchronization

Average processing
delay per task

Energy Efficiency Ratio of computational
output to energy
consumed

Energy-delay
product (EDP)

3 Synchronization Methodology
The synchronization methodology for integrating
V2X sensing systems and UAV-derived aerial imagery
is structured around three critical stages: data
acquisition, preprocessing, and data integration.
This methodology is designed to address the unique
challenges posed by subterranean environments,
including limited visibility, communication
constraints, and high computational demands.
Each stage of the process incorporates advanced
techniques to ensure that the resulting dataset is
precise, consistent, and suitable for real-time analysis
and decision-making [6].

3.1 Data Acquisition
Data acquisition represents the foundational stage of
the synchronization process, wherein data streams
from V2X sensors and UAV systems are collected.
V2X sensing systems encompass a range of vehicular
sensors, such as LiDAR (Light Detection and Ranging),

cameras, and inertial measurement units (IMUs), as
well as sensors embedded in roadside infrastructure,
including traffic lights, environmental monitors,
and ultra-wideband (UWB) positioning systems.
These sensors collectively generate diverse data
streams that provide granular, localized information
about the subterranean environment. For example,
LiDAR captures three-dimensional spatial data that
maps the immediate surroundings [7], while IMUs
provide measurements of velocity, acceleration, and
orientation, essential for navigation in GPS-deprived
environments.

Simultaneously, UAVs equipped with high-resolution
optical cameras, thermal imaging sensors, and
multispectral sensors capture aerial imagery and
environmental data. These UAVs often follow
predefined flight paths or adapt dynamically to
environmental conditions to maximize coverage.
Thermal sensors are particularly useful for identifying
anomalies such as heat leaks or hotspots that
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may indicate structural weaknesses or hazardous
conditions. All collected data is time-stamped at the
source using synchronized clocks to ensure temporal
consistency across streams. The timestamp ti for each
data packet is embedded during acquisition and forms
the basis for temporal alignment in subsequent stages
[8], [9].

To minimize latency and ensure efficient data flow,
both V2X and UAV data are transmitted to nearby edge
computing nodes. These nodes act as intermediate
processing hubs that preprocess and transmit data
to central servers or other computational resources.
The data acquisition stage, therefore, establishes the
raw inputs required for the synchronization pipeline,
balancing high fidelity with operational efficiency.

3.2 Preprocessing
The preprocessing stage refines raw data to eliminate
noise, reduce inconsistencies, and extract salient
features that facilitate integration. Given the diverse
nature of the data streams, tailored preprocessing
techniques are applied to V2X sensor data and UAV
imagery.

For V2X sensor data, preprocessing begins with
noise reduction and calibration. For instance, LiDAR
point clouds are filtered to remove outliers caused
by environmental interference, such as dust, fog, or
reflections from wet surfaces. A statistical outlier
removal algorithm is commonly used, which identifies
and excludes points based on their deviation from the
local density distribution:

pfiltered = pi if
∑N

j=1 dij

N
≤ τ,

where pi is a point in the cloud, dij is the distance
between points i and j, N is the number of
neighbors considered, and τ is a threshold determined
empirically.

IMU data is preprocessed by compensating for
sensor drift and bias, which are inherent to inertial
sensors. This involves applying complementary or
Kalman filtering to combine IMU data with other
sensor inputs, such as velocity estimates from wheel
encoders or positional data from UWB systems. The
resulting fused data stream is both stable and accurate,
providing a reliable basis for navigation and alignment
tasks.

For UAV-derived imagery, preprocessing techniques
focus on enhancing the quality and usability of images
captured in low-light or noisy conditions. Histogram

equalization is applied to improve contrast, while noise
reduction is achieved using Gaussian or median filters:

Ienhanced(x, y) =
I(x, y)− µ

σ
· α+ β,

where I(x, y) is the original pixel intensity, µ and σ are
the mean and standard deviation of pixel intensities,
andα and β are scaling parameters. These adjustments
ensure that critical features such as structural elements
and environmental anomalies are clearly visible.

Feature extraction algorithms are then employed
to identify key landmarks and objects within the
dataset. For V2X data, feature extraction focuses
on identifying spatial boundaries, obstacles, and
traffic-related elements, such as lane markings or
vehicle trajectories. Techniques such as edge detection
and feature point extraction (e.g., Harris or Shi-Tomasi
corner detection) are applied to camera images. UAV
imagery undergoes similar feature extraction, with
algorithms detecting tunnel walls, cracks, and heat
signatures indicative of potential hazards. These
extracted features are subsequently encoded into a
structured format suitable for integration.

3.3 Data Integration
Data integration constitutes the final stage of the
synchronization methodology, where refined V2X
and UAV data streams are merged into a unified
representation. This process relies on a hybrid
approach that combines model-based and data-driven
techniques to achieve high levels of accuracy and
robustness in the integrated dataset.

The first step in data integration is temporal alignment,
which synchronizes the data streams fromV2X sensors
andUAV systems based on their respective timestamps.
A sliding window approach is employed to match data
packets within a predefined time window∆T :

Align(tV2X, tUAV) =

{
1, |tV2X − tUAV| ≤ ∆T

0, otherwise.

This approach ensures that only temporally
consistent data is integrated, mitigating the effects of
network-induced delays and jitter.

Once temporal alignment is achieved, spatial
alignment is performed to correlate the datasets
in physical space. This involves registering the
coordinate systems of the V2X and UAV data streams
using transformation matrices. For instance, if pV2X
and pUAV represent the coordinates of a point in the
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V2X and UAV frames, respectively, their relationship
can be expressed as:

pV2X = RpUAV + t,

whereR is a rotationmatrix and t is a translation vector.
These parameters are estimated using featurematching
algorithms, such as the iterative closest point (ICP)
algorithm, which minimizes the distance between
corresponding features:

EICP =

N∑
i=1

∥pi
V2X − (Rpi

UAV + t)∥2.

After achieving temporal and spatial alignment, the
data streams are fused into a unified representation.
This fusion process combines complementary
information from the two modalities to create a
multidimensional dataset that supports real-time
applications such as navigation, hazard detection,
and decision support. For example, a probabilistic
occupancy map can be constructed using both LiDAR
data and aerial imagery. Let Pocc(x) denote the
probability that a voxel x is occupied. This probability
is updated based on sensor measurements using
Bayesian inference:

Pocc(x|z) =
P (z|x)Pocc(x)

P (z)
,

where z represents the sensor measurement, P (z|x) is
the likelihood of observing z given x, and P (z) is the
marginal probability of the observation.

To further enhance the utility of the integrated
dataset, real-time analysis techniques are applied. For
example, convolutional neural networks (CNNs) can
process the fused data to identify structural anomalies,
classify environmental conditions, or predict potential
hazards. The final integrated dataset is thus both
comprehensive and actionable, supporting a wide
range of applications in subterranean operations.

4 Evaluation and Results
The proposed synchronization framework was
rigorously evaluated in a controlled environment
designed to replicate the complexities of subterranean
corridors, such as tunnels and mines. The evaluation
focused on assessing the framework’s performance
across several key metrics: synchronization latency,
data accuracy, energy efficiency, and qualitative
enhancements in situational awareness. The results of
this evaluation underline the framework’s potential

to advance operational efficiency and safety in
subterranean environments by integrating V2X
sensing and UAV-based aerial imagery.

4.1 Experimental Setup
To ensure a realistic and comprehensive evaluation, a
simulated subterranean environment was constructed
based on the structural and operational characteristics
of real-world tunnels and mines. This simulated
environment included features such as narrow
passageways, varying levels of illumination, and
environmental interference, such as dust and signal
attenuation caused by metallic reinforcements. The
infrastructure was outfitted with V2X-enabled vehicles
and roadside units (RSUs) equipped with LiDAR,
cameras, and inertial measurement units (IMUs).
UAVs with high-resolution optical cameras and
thermal imaging sensors were programmed to capture
aerial imagery of the environment, mimicking the
operational conditions of an actual subterranean
corridor [6], [10].

Edge computing nodes were strategically deployed
within the simulation to process and synchronize the
data streams from V2X sensors and UAV systems.
The framework’s algorithms for temporal alignment,
preprocessing, and data integrationwere implemented
on these nodes, allowing for real-time analysis of
the environment [11]. The simulated environment
was designed to test the framework under various
conditions, including low-light scenarios, dynamic
obstacles, and high data traffic, to assess its robustness
and adaptability.

4.2 Performance Metrics
The evaluation centered on three quantitative
performance metrics—synchronization latency, data
accuracy, and energy efficiency—and a qualitative
assessment of situational awareness. These metrics
were chosen to capture the framework’s operational
effectiveness, computational efficiency, and impact on
overall safety and decision-making.

Synchronization Latency: This metric measured the
time required to align and integrate data streams
from V2X sensors and UAV systems. Synchronization
latency is critical for real-time applications, as delays
can undermine the system’s ability to respond to
dynamic changes in the environment.

Data Accuracy: Data accuracy was evaluated by
comparing the integrated dataset generated by
the framework to ground-truth information about
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Table 5. Summary of Key Techniques in Synchronization Methodology

Stage Objective Techniques Employed
Data Acquisition Collect raw data from

V2X sensors and UAVs
Time-stamping, edge
transmission

Preprocessing Refine and extract
features from raw data

Noise reduction, feature
extraction, image
enhancement

Data Integration Merge V2X and UAV
data into a unified
dataset

Temporal and spatial
alignment, Bayesian
inference, CNNs

Table 6. Challenges and Solutions in Synchronization Methodology

Challenge Impact Proposed Solution
Temporal Misalignment Reduces

synchronization
accuracy

Sliding window
alignment, predictive
modeling

Sensor Noise Degrades data quality Statistical filtering,
noise reduction
algorithms

Data Heterogeneity Increases integration
complexity

Feature matching,
transformation matrix
estimation

High Computational
Demands

Limits real-time
applicability

Edge computing, task
offloading

the simulated environment. Improvements in
accuracy were attributed to the framework’s advanced
preprocessing and data fusion techniques, which
minimized noise, occlusions, and misalignments.

Energy Efficiency: Energy efficiency was assessed by
measuring the power consumption of the framework
during operation. The use of edge computing and
distributed processing was expected to reduce energy
consumption by offloading computationally intensive
tasks to nearby nodes, thereby minimizing data
transmission and processing overhead.

Situational Awareness: A qualitative assessment
was conducted to evaluate the framework’s ability
to enhance situational awareness. This included the
system’s effectiveness in supporting precise navigation,
detecting hazards, and providing a comprehensive
understanding of the subterranean environment.

4.3 Quantitative Results
The results of the quantitative evaluation demonstrate
the effectiveness of the proposed synchronization
framework in addressing the challenges of
subterranean operations.

Synchronization Latency: The framework achieved an

average synchronization latency of 120 milliseconds,
with a maximum observed latency of 180 milliseconds
under high data traffic conditions. This performance
is well within the acceptable range for real-time
applications, enabling the system to respond promptly
to environmental changes. The sliding window
approach for temporal alignment and the use of edge
computing significantly contributed to this low latency,
ensuring that data streams fromV2X sensors andUAVs
were seamlessly synchronized.

Data Accuracy: The integrated dataset produced
by the framework exhibited a 15% improvement in
accuracy compared to baseline methods that relied
on independent data streams. The preprocessing
techniques applied to V2X andUAVdata, such as noise
reduction and feature extraction, were instrumental
in achieving this improvement. For example, the
framework effectively identified and corrected sensor
drift in IMU data, and enhanced UAV imagery
captured in low-light conditions, ensuring that critical
features such as tunnel walls, structural anomalies,
and potential hazards were accurately represented.

Energy Efficiency: The adoption of edge computing
and distributed processing reduced the framework’s
energy consumption by 20% compared to centralized
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processing approaches. By offloading computationally
intensive tasks to edge nodes located near the data
sources, the frameworkminimized the energy required
for data transmission and processing. This reduction
in energy consumption aligns with the principles of
sustainable operation, highlighting the framework’s
potential for deployment in energy-constrained
subterranean environments.

4.4 Qualitative Results
In addition to the quantitative metrics, a qualitative
assessmentwas conducted to evaluate the framework’s
impact on situational awareness and operational
efficiency. The integration of V2X sensing and UAV
aerial imagery significantly enhanced the system’s
ability to provide a comprehensive understanding of
the subterranean environment. This improvement was
evident in several key areas:

Precise Navigation: The framework facilitated precise
navigation by providing real-time updates on the
location and movement of vehicles within the
subterranean corridor. The combination of V2X data,
such as vehicle trajectories and positional information,
with UAV-derived spatial maps enabled the system to
navigate complex environments with high accuracy.
Operators reported improved confidence in the
system’s ability to handle dynamic obstacles and
navigate narrow passageways.

Early Hazard Detection: The enhanced data
accuracy and real-time processing capabilities of the
framework enabled early detection of hazards such
as structural anomalies, water infiltration, and heat
leaks. UAV thermal imaging was particularly effective
in identifying potential safety risks that were not
immediately visible to V2X sensors. By integrating
these insights, the framework provided operators with
actionable information to mitigate risks and prevent
accidents.

Comprehensive Situational Awareness: The
integration of diverse data streams created a holistic
representation of the subterranean environment,
offering operators a bird’s-eye view of the
corridor alongside detailed local information.
This comprehensive situational awareness reduced the
likelihood of operational errors, such as misjudging
distances or overlooking critical hazards. The system’s
ability to provide clear and consistent information
was particularly beneficial in scenarios involving low
visibility or complex spatial layouts.

To further validate these findings, operator feedback

was collected through structured interviews and
surveys. Operators consistently highlighted the
system’s ability to enhance decision-making and
improve confidence in navigation and hazard detection
tasks. These qualitative results underscore the
transformative potential of the proposed framework
for subterranean operations.

4.5 Discussion of Results
The results of the evaluation demonstrate the
robustness and versatility of the proposed
synchronization framework in addressing the
challenges of subterranean environments. The
framework’s ability to achieve low synchronization
latency and high data accuracy while maintaining
energy efficiency positions it as a viable solution for
real-time applications in tunnels, mines, and other
subterranean corridors.

The reduction in synchronization latencywas achieved
through the effective use of temporal alignment
algorithms and edge computing. This highlights the
importance of minimizing delays in data processing
and transmission, particularly in environments where
rapid responses are critical to safety and efficiency.
The improvement in data accuracy further emphasizes
the value of robust preprocessing and data fusion
techniques. By addressing issues such as sensor drift,
noise, and occlusions, the framework ensured that the
integrated dataset was both reliable and actionable.

The qualitative findings reinforce the quantitative
results, demonstrating that the framework’s
integration of V2X and UAV data enhances situational
awareness and operational decision-making. The
ability to provide precise navigation, early hazard
detection, and a comprehensive understanding of the
environment represents a significant advancement
in subterranean systems. These capabilities are
particularly valuable in high-risk scenarios, where
accurate and timely information can prevent accidents
and improve safety outcomes.

The reduction in energy consumption achieved
through edge computing and distributed processing
further supports the framework’s suitability for
deployment in energy-constrained environments.
By optimizing resource utilization, the framework
not only improves sustainability but also reduces
operational costs, making it an attractive solution
for a wide range of subterranean applications. The
evaluation results provide strong evidence of the
proposed synchronization framework’s effectiveness
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Table 7. Quantitative Results of the Synchronization Framework Evaluation

Performance Metric Observed Performance Improvement Over
Baseline

Synchronization
Latency

120 ms (average), 180
ms (maximum)

25% lower latency

Data Accuracy 15% improvement
in integrated dataset
fidelity

Consistent
representation of
features

Energy Efficiency 20% reduction in energy
consumption

Enhanced sustainability
through edge
computing

Table 8. Summary of Qualitative Findings

Capability Impact on Operations Feedback from
Operators

Precise Navigation Improved confidence
in navigating complex
environments

Operators highlighted
accuracy in dynamic
scenarios

Early Hazard Detection Enhanced safety
through timely
identification of risks

UAV thermal imaging
identified critical
anomalies

Comprehensive
Awareness

Reduced operational
errors and improved
decision-making

Operators praised the
clarity of integrated
data

and potential impact. The combination of quantitative
improvements in performance metrics and qualitative
enhancements in situational awareness underscores
the framework’s ability to transform subterranean
operations. Future work will focus on extending
these findings to additional real-world scenarios
and exploring opportunities to further optimize the
framework for scalability and adaptability in diverse
environments [12].

5 Conclusion
This paper introduced a real-time data synchronization
framework designed to integrate V2X sensing and
UAV-derived aerial imagery for the sustainable
operation of subterranean corridors, including
tunnels, mines, and underground transportation
networks [13]. By systematically addressing key
challenges such as synchronization latency, data
fusion, and resource optimization, the proposed
system offers significant advancements in situational
awareness and operational efficiency within these
highly constrained and complex environments.
The framework incorporates advanced temporal
alignment algorithms, robust preprocessing methods,
and a hybrid approach to data integration, enabling
seamless synchronization and comprehensive analysis

of heterogeneous data streams.

The results of the evaluation underscore the
framework’s effectiveness, demonstrating substantial
improvements in synchronization latency, data
accuracy, and energy efficiency compared to baseline
approaches. With an average synchronization latency
of 120 milliseconds and a 15% improvement in data
accuracy, the system achieves the precision and
responsiveness required for real-time applications.
Moreover, the integration of edge computing and
distributed processing reduced energy consumption
by 20%, aligning the framework with the principles of
sustainable operation. Qualitative assessments further
highlighted the system’s transformative impact
on subterranean operations, including enhanced
navigation, early hazard detection, and improved
decision-making, all of which contribute to greater
safety and reliability.

By combining V2X and UAV data streams,
the framework creates a multidimensional
understanding of subterranean environments,
addressing long-standing challenges associated
with visibility, communication interference, and
operational constraints. The incorporation of
preprocessing techniques, such as noise reduction
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and feature extraction, ensures that the data used
for decision-making is both accurate and actionable.
Additionally, the use of advanced data fusion
techniques enables the system to mitigate the effects of
occlusions and environmental interference, providing
a robust basis for navigation and hazard detection
even in the most challenging scenarios.

The proposed framework holds significant promise
for advancing subterranean corridor operations,
paving the way for more sustainable and efficient
underground systems. Its adaptability to real-time
constraints and its ability to provide actionable
insights demonstrate its potential for wide-ranging
applications in mining, transportation, and urban
infrastructure. Furthermore, the system’s emphasis
on resource optimization supports the broader goal of
reducing the environmental impact of subterranean
operations, aligning with global sustainability
initiatives.

Future work will focus on extending the framework
to accommodate larger-scale and more diverse
deployments, including multi-node networks and
complex subterranean infrastructures. Additionally,
the integration of advanced artificial intelligence
techniques, such as predictive analytics and adaptive
decision-making algorithms, represents a key area
for further development. These capabilities will
enable the system to anticipate changes in the
environment and dynamically adjust its operations,
further enhancing its resilience and efficiency. Another
avenue for exploration is the application of the
framework in hybrid environments that combine
subterranean and surface-level operations, creating
a unified system for integrated mobility and logistics
[14], [15]. The proposed synchronization framework
offers a comprehensive solution to the challenges
of data integration and operational optimization
in subterranean corridors. By bridging the gap
betweenV2X sensing andUAV imagery, the framework
enhances the safety, efficiency, and sustainability
of underground operations. Its demonstrated
effectiveness and adaptability position it as a critical
enabler of future advancements in autonomous
systems and intelligent infrastructure, marking a
significant step forward in themanagement of complex
subterranean environments.
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