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Abstract
This paper investigates cross-lingual evidence-based
strategies for uncovering fabrications that
emerge in neural translation systems, focusing
on the phenomenon known as hallucination
in machine-generated texts. Although neural
architectures have achieved remarkable performance
in many translation tasks, they remain prone to
generating content that is factually ungrounded
or entirely fabricated. Such fabrications
compromise reliability, especially in domains
where accuracy is mandatory. The proposed
framework integrates linguistic alignment, bilingual
term matching, and extrinsic verification checks
across multiple language pairs. Emphasis is
placed on constructing domain-specific corpora
that underscore knowledge-intensive expressions,
enabling robust identification of fabricated
segments. Empirical analysis covers a spectrum of
neural machine translation models, investigating
how each architecture handles rare terms and
nuanced syntactic constructs. The paper also
develops a robust suite of metrics designed to
quantify hallucination severity, leveraging lexical
similarity measures and cross-entropy differentials.
Results demonstrate that employing external
knowledge sources and semantic aligners can reduce
fabrication rates across a variety of languages,
thereby enhancing translation integrity. The
implications of this research extend to areas such
as cross-border communications, international
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legal proceedings, and medical translations. By
synthesizing empirical findings, this study offers
a nuanced roadmap for future explorations in
cross-lingual integrity verification, highlighting the
evolving interplay between data-driven models and
linguistic fidelity.
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1 Introduction
Neural Machine Translation (NMT) architectures
have redefined the scope of automated language
conversion, benefiting from large-scale parallel
corpora and sophisticated deep learning frameworks.
Statistical models once held primacy, relying on
phrase-based and word-based alignments that
demanded explicit feature engineering. Newer
models rely on self-attention mechanisms that
capture long-range dependencies, yielding improved
fluency in both high-resource and low-resource
languages. Despite these successes, growing
evidence indicates that even the most advanced
systems exhibit vulnerabilities wherein words,
phrases, or entire segments become fabricated.
Researchers often employ the term hallucination
for these manifestations, but the stakes are elevated
when disseminating misinformation, as readers
and end-users expect accurate representations of
the source content. Such hallucinatory outputs
compromise user trust and raise broader ethical
implications, ranging from misplaced reliance in
critical sectors to potential legal ramifications when
official documents are mistranslated.
A central difficulty arises from the neural network’s
reliance on learned representations that might
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Architecture Core Mechanism Advantages Limitations
RNN-based NMT Recurrent

connections
Captures
sequential
dependencies

Struggles with
long-range
dependencies

CNN-based NMT Convolutions Parallelizable,
faster training

Limited context
window

Transformer Self-attention Handles
long-range
dependencies
well

Requires extensive
training data

Hybrid Models Combination of
architectures

Leverages
strengths of
multiple methods

Increased complexity

Table 1. Comparison of different Neural Machine Translation (NMT) architectures.

not fully capture the nuances of context. When
encountering rarely seen terminology, archaic
expressions, or insufficient training data, the model
can resort to invention [1], [2]. In cross-lingual
contexts, the phenomenon becomes even more
opaque, since there may be fewer bilingual experts
able to detect inaccuracies. Moreover, with the
proliferation of commercial translation services,
detecting these fabrications has become a global
priority. Significant research and industry efforts have
emerged to mitigate inaccuracies, but the complexity
of language phenomena and the global diversity of
linguistic structures continue to challenge model
reliability. Traditional evaluation metrics such as
BLEU, METEOR, or TER focus on surface-level
overlaps with reference texts, potentially overlooking
deeper semantic inconsistencies [3].

Identifying fabrications in neural translations remains
an essential endeavor if high-stakes fields like
healthcare, legal documentation, and scientific
publishing are to employ machine translation
reliably. Subtle errors, such as altered drug
dosages or changes in chemical compound names,
can produce catastrophic outcomes. Even less
critical mistranslations can hamper cross-cultural
communications, limit the reach of vital information,
and erode user confidence. This prompts an urgent
need for a framework that emphasizes evidence-based
validation strategies. Instead of relying solely on
standard reference-based evaluation, researchers can
harness external knowledge repositories, curated
bilingual dictionaries, or domain-specific lexicons to
confirm the veracity of translated segments [4], [5].

Multiple strategies have been proposed to address

these issues. Some rely on decoder modifications
that encourage faithful generation by augmenting
the training dataset with adversarial examples
[6]. Others employ retrieval-based paradigms,
wherein the translation model consults external data
sources to validate or refute generated hypotheses.
Yet, these approaches may require specialized
infrastructure or extensive domain-specific knowledge.
A modular, cross-lingual framework that harmonizes
evidence-based validation with the model’s inherent
capacity for contextual inference offers a more robust
pathway. In this study, the goal is to propose and
systematically evaluate such an integrated approach.

The subsequent sections are structured to
explore the multifaceted nature of cross-lingual
hallucinations, elucidate evidence-based validation
mechanisms, and propose quantifiable metrics for
fabrication detection. This investigation covers
multiple neural architectures, including standard
sequence-to-sequence, Transformer-based, and
convolutional variants, comparing how each is
susceptible to generating falsified data under resource
constraints. Empirical findings highlight the capacity
of evidence-augmented methods to substantially
reduce the frequency of these errors. Ultimately,
this research provides a foundation for better
understanding and mitigating neural hallucinations,
offering a roadmap for future explorations that
blend computational linguistic strategies with
domain-specific knowledge integration.

2 Overview of Neural Translation Fabrications
Hallucination in neural translation emerges when
models generate linguistically plausible sequences
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Type Description Causes Impact
Intrinsic
Hallucination

Fluent but
incorrect output

Training data
biases

Misleading translations

Extrinsic
Hallucination

Unrelated content
generation

Lack of contextual
grounding

Loss of meaning

Omission Errors Missing crucial
details

Model
underconfidence

Incomplete information

Insertion Errors Addition of
non-existent
elements

Overgeneralization Distorted message

Table 2. Categorization of hallucinations in Neural Machine Translation (NMT).

Metric Type Strengths Weaknesses
BLEU Reference-based Measures n-gram

overlap
Ignores semantic
correctness

METEOR Reference-based Considers
synonymy

Computationally
expensive

TER Edit-distance
based

Evaluates effort
needed for
correction

Doesn’t capture fluency
well

BERTScore Embedding-based Captures
semantic
similarity

Requires deep models

Table 3. Common evaluation metrics for detecting hallucinations in machine translation.

ungrounded in the source text. These anomalies can
take various forms, from isolated word substitutions
to entire passages that deviate from the intended
meaning. Scholars have traced this behavior to
factors including inherent network overconfidence,
insufficient domain coverage in training sets, and
an over-reliance on statistical patterns rather than
genuine semantic alignment. In extreme cases,
fabrications can appear so coherent that they escape
rudimentary detection methods, leading to a more
insidious problem of misinformation. Recognizing
the magnitude of risk, researchers seek theoretical
underpinnings that explain why neural translation
systems are prone to this defect.

Empirical examinations of hallucinations have
revealed that the phenomenon often arises in
under-resourced language pairs where parallel
corpora are minimal or imbalanced. For instance,
widely spoken languages such as English, Spanish,
or French typically have robust training data, which
constrains the scope of hallucination to rare domains or
obscure expressions. In contrast, languages with fewer
digital resources see more pronounced inaccuracies,

because the model attempts to interpolate from
patterns learned in dissimilar language contexts.
Additionally, code-switching scenarios can exacerbate
the problem, as the presence of multiple languages
within a single sentence complicates the distributional
cues upon which the translation engine depends.

The architecture of modern NMT systems
contributes to how such fabrications manifest.
Early sequence-to-sequence models employed
recurrent neural networks (RNNs) with attention,
enabling the decoder to attend selectively to relevant
regions of the source text. Although this mechanism
improved translation accuracy compared to older
phrase-based models, it does not entirely mitigate
the risk of fabrications. Transformers, relying on
multi-headed self-attention, have further amplified
gains in translation quality and speed. Nonetheless,
the global attention mechanism can still spread errors
over different layers, thereby embedding certain
inaccuracies deep within the network. Moreover,
subword tokenization schemes, while beneficial for
handling out-of-vocabulary terms, can occasionally
amplify confusion around morphological variants,
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Cause Description Impact Example
Overconfidence Model assigns

high probability
to incorrect
outputs

Leads to fluent
but false
translations

Fabricated medical
terms

Low-Resource
Training

Insufficient
parallel data for
certain languages

Higher
hallucination
rates in rare
languages

Errors in indigenous
language translation

Code-Switching Mixing of
languages in
input text

Confuses
tokenization
and alignment

Incorrect handling of
multilingual phrases

Subword
Tokenization

Breakdown
of words into
smaller units

Can generate
plausible but
incorrect terms

Incorrect morpheme
combinations

Table 4. Key factors contributing to hallucinations in neural translation models.

leading to invented forms that appear plausible on the
surface.

Large-scale pretraining also contributes to this
dynamic. NMT systems increasingly benefit from
pretrained language models like BERT, RoBERTa, or
GPT variants. Although these models offer a powerful
linguistic prior, they are trained predominantly on
monolingual corpora. The cross-lingual adaptation
often relies on additional fine-tuning or bridging
techniques, but certain lexical or syntactic irregularities
remain unaddressed. When the model encounters
novel terms, domain-specific jargon, or idiomatic
expressions, it may revert to generating approximate
translations that risk deviating from the factual
source content. Subtle distortions can accumulate,
especially if the system’s decoding mechanism selects
high-probability tokens that maintain syntactic fluency
without guaranteeing semantic fidelity.

The variability of hallucinations underscores the
need to analyze them from multiple perspectives.
Lexical deviations may occur through synonyms or
near-synonyms that misrepresent domain-specific
terms. Syntactic fabrications might reorder clauses
in a way that alters the original meaning. There are
also rhetorical-level hallucinations in which entire
conceptual elements appear, diverging significantly
from the source intent. Researchers must therefore
develop frameworks that can detect anomalies at
each level. Advances in interpretability shed light
on hidden representations, showing how attention
weights, activation patterns, and intermediate
embeddings correlate with the eventual output.

Yet even interpretability methods sometimes fail to
definitively isolate the root cause of hallucinations,
given the complexity of deep architectures.

Achieving a comprehensive understanding of
the neural underpinnings of fabrication informs
the development of robust countermeasures.
Evidence-based strategies, which rely on external
verifiers, linguistic constraints, or cross-lingual
alignments, represent a significant leap toward
mitigating these errors. By systematically reviewing
the current landscape, it becomes apparent
that a unified approach that combines multiple
signals—ranging from domain-specific dictionaries to
alignment heuristics—can offer stronger protection
against covert translation errors. The following
sections propose methods that incorporate bilingual
lexicon checks, semantic alignment tools, and
knowledge graphs, all integrated within a pipeline
designed to ensure factual accuracy. Such measures
assume heightened importance in high-stakes
applications, where even a minor distortion can have
serious consequences.

3 Cross-Lingual Evidence-Based Approaches
Recent research underscores the utility of coupling
internal model representations with external evidence
sources to identify and correct hallucinatory output.
One approach leverages bilingual dictionaries
or terminological databases that list valid word
correspondences for specialized domains. When
the translation engine produces a segment
containing terms absent in these references, a
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Fabrication Type Definition Example Potential Consequence
Lexical
Hallucination

Incorrect word
substitution

"Aspirin"
translated as
"Ibuprofen"

Misinterpretation in
healthcare settings

Syntactic
Hallucination

Reordered
clauses affecting
meaning

"The patient was
given medicine"
→ "The medicine
was given to a
patient"

Ambiguity in legal texts

Rhetorical
Hallucination

Unfounded
conceptual
additions

Adding a reason
for an event not
present in source
text

Misinformation in news
translation

Structural
Hallucination

Entirely new
sentence
formation

Inserting a
fabricated
summary in
a translated
document

Distortion of original
content meaning

Table 5. Classification of hallucinations based on linguistic structure.

Strategy Method Advantages Challenges
Evidence-based
Validation

Uses external
knowledge bases

Improves factual
accuracy

Requires structured
data sources

Bilingual Lexicon
Checks

Cross-references
translation
with curated
dictionaries

Ensures term
consistency

Limited coverage for
rare languages

Semantic
Alignment Tools

Measures
contextual
coherence across
languages

Reduces meaning
distortion

Computationally
expensive

Knowledge
Graph Integration

Links translations
to verified entity
relationships

Helps prevent
misinformation

Needs extensive
preprocessing

Table 6. Methods to detect and mitigate hallucinations in neural translation models.

flag is raised, prompting either a revision or an
alert for human post-editing. Although seemingly
straightforward, dictionary-based checksmust balance
comprehensiveness with the risk of false positives.
Overly strict dictionaries may reject legitimate
neologisms or updated nomenclature, thus stifling the
evolution of language usage.

A more nuanced method employs cross-lingual
semantic alignment. This technique projects source
and target sentences into shared embedding spaces,
ensuring that words or phrases sharing similar
meanings cluster together. Tools such as multilingual

BERT or XLM-R excel in creating embedding
representations that capture semantic equivalences
across languages. By examining alignment patterns,
the system can detect segments that drift away
from expected distributions, highlighting potential
fabrications. This alignment-based detection can be
further refined by introducing constraints derived
from domain knowledge. For example, in a medical
context, a term referencing a specific procedure in
the source should map closely to the recognized
target-language equivalent. If the alignment vector
deviates significantly, a deeper investigation is
triggered.
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In parallel, knowledge graphs offer a structured
repository of cross-lingual links between entities,
concepts, and relationships. These graphs, which
might contain factual data curated from encyclopedic
sources, can operate as a robust verification layer. After
the neural translator generates a candidate segment,
the system checks whether the entities match known
cross-lingual links in the graph. In cases where an
entity is misrepresented or replaced with an unrelated
item, the evidence-based pipeline flags that portion.
Such checks are indispensable in specialized areas
like legal or scientific translations, where an incorrect
entity reference can transform themeaning of an entire
passage. Coupling knowledge graphs with contextual
embeddings refines the verification process further,
since the system not only identifies entity mismatches
but also evaluates the plausibility of relationships in
the translated text.

A crucial aspect of implementing evidence-based
strategies involves real-time or near-real-time
operations, especially in live translation systems.
Incorporating alignment checks, dictionary lookups,
or knowledge graph queries during inference demands
computational efficiency. Caching frequently used
terms and indexing knowledge graph subcomponents
aligned to specific domains can mitigate latency
concerns. Some frameworks adopt a hybrid approach,
performing partial checks for common terms
on-the-fly while deferring more complex validations
for a post-processing phase. Such trade-offs
balance accuracy with throughput requirements,
accommodating large-scale deployments. Importantly,
the synergy between evidence-based checks and
neural inference should be configured to preserve the
fluidity of generation, preventing the system from
becoming overly rigid or reliant on a limited reference
set.

Human-in-the-loop strategies can further refine
cross-lingual evidence-based mechanisms. Expert
translators can review flagged segments, accepting
or rejecting suggested corrections, thereby creating
iterative feedback loops. This feedback enhances the
system’s dictionary entries and alignment thresholds,
progressively lowering the incidence of false positives.
In specialized domains where language evolves
rapidly—such as technology or bioscience—expert
oversight ensures that any expansions in domain
vocabulary are integrated swiftly. Machine
translation developers are increasingly moving
toward collaborative solutions, acknowledging that
purely automated verification may not suffice for

highly complex or sensitive texts. By designing
user-friendly interfaces where domain experts can
annotate or comment on flagged segments, the entire
pipeline gains from continuous refinement grounded
in real-world usage patterns.

4 Implementation and Experimental Setup
Empirical validation of the proposed cross-lingual
evidence-based strategies demands careful
experimental design, covering diverse language
pairs and text domains. This section outlines the
setup adopted in this study, detailing data collection,
model architectures, and implementation specifics
for dictionary checks, semantic alignment modules,
and knowledge graph integrations. A core objective
is to ensure that the methodology is transparent and
reproducible, enabling comparisons with baseline
systems that lack evidence-based mechanisms.
Data curation begins by selecting parallel corpora
for four language pairs: English–Spanish,
English–German, English–Chinese, and
English–Swahili. These pairs capture different
degrees of resource availability, from widely studied
European languages to relatively under-resourced
African languages. For each language pair, the corpora
include both general-domain texts (such as Wikipedia
articles) and specialized texts from scientific, legal,
and medical domains. This partition allows the
study to assess how well the proposed methods
handle both commonly encountered phrases and
highly domain-specific expressions. An additional
monolingual corpus is included for fine-tuning the
semantic alignment module, ensuring that context
vectors capture broader usage patterns beyond direct
translation pairs.
Model selection encompasses three principal
NMT architectures: a Transformer-based model, a
recurrent sequence-to-sequence model with attention,
and a convolutional sequence-to-sequence model.
Each is trained using standard hyperparameters
derived from published benchmarks, with minor
modifications to integrate external evidence modules.
The baseline configuration operates without any
external evidence, producing translations in a purely
data-driven manner. The experimental configuration
incorporates dictionary-based validation, semantic
alignment checks, and knowledge graph lookups.
For the dictionary-based component, specialized
lists derived from domain-specific glossaries
supplement a general-purpose bilingual dictionary. A
threshold-based mechanism determines when to flag
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a translation for containing lexical items that do not
appear in the external references.

The semantic alignment module employs a
multilingual pretrained model, such as XLM-R,
fine-tuned on parallel sentence pairs to maximize
cross-lingual consistency. Sentences are projected into
a shared embedding space, and an alignment score
is computed by comparing average or max-pooled
embeddings across segments. If the alignment
score falls below a certain threshold, indicating
semantic drift, the translation is flagged for further
examination. Knowledge graph integration relies on
linking extracted named entities from both source
and target to a cross-lingual knowledge base that
contains entity IDs and interlingual links. The system
checks whether the entity mapping is valid and
whether the relationships between entities align with
those stored in the graph. This step is carried out
in a pipeline fashion, after the translator generates a
preliminary output and the alignment module signals
an acceptable global match.

To ensure that the evaluation is robust, the
experimental suite features both automatic metrics
and human judgments. For the automatic metrics,
BLEU, METEOR, and TER are used to quantify
surface-level accuracy relative to reference translations.
A specialized hallucination metric is introduced to
capture instances of fabricated text, assigning a penalty
score when flagged translations deviate significantly
from the source meaning. Human evaluators, each
with domain expertise in the relevant subject matter,
conduct blind assessments on subsets of flagged
segments. They categorize issues based on severity
(minor lexical deviation versus major factual error)
and domain risk level (low-stakes general text versus
high-stakes medical passage). This combination of
automated and manual evaluation offers a clearer
picture of how well the evidence-based strategies
perform, compared with baselines that rely solely on
large-scale neural inference.

Implementation details are facilitated using a modular
framework that divides the translation pipeline
into distinct components. Python-based scripts
orchestrate data preprocessing and post-processing,
while specialized modules written in C++ or CUDA
handle tokenization, alignment calculations, and
knowledge graph queries for speed. The integration
points between modules are standardized, allowing
multiple NMT backends to be interfaced with the
same evidence-based layer. This design further

promotes extensibility, as new dictionaries, additional
domain corpora, or updated knowledge graphs can
be incorporated without rewriting the core pipeline.
Logs capturing flagged translations, alignment scores,
and final acceptance or rejection decisions are stored
in a structured database, enabling in-depth analysis
and reproducibility.

5 Evaluation Metrics and Analysis
A robust evaluation framework is critical for
measuring the effectiveness of evidence-based
strategies. Traditional reference-based metrics such
as BLEU, METEOR, and TER quantify the overlap
between the machine-generated translation and one
or more human-generated references. While these
metrics can highlight gross deviations in lexical choice
or word order, they offer limited insights into deeper
semantic or factual consistency. The phenomenon
of hallucination requires metrics that capture
the alignment of named entities, domain-specific
vocabulary, and conceptual fidelity. Consequently,
this study introduces a dedicated hallucination index
(HI), which weights detected fabrications based on
their severity and potential impact.
The HI begins by categorizing errors flagged by
the evidence-based pipeline. Each flagged instance
is mapped to one of four categories: (1) minor
lexical mismatch, (2) moderate lexical mismatch with
partial semantic drift, (3) major factual error, and
(4) complete hallucination. Category weights reflect
the potential harm or confusion resulting from each
error. For example, a minor lexical mismatch, such
as an incorrect preposition, carries a low weight. A
major factual error, such as translating a drug name
incorrectly, carries a high weight. Summing weighted
errors and normalizing by the number of words in
the translation yields the HI. Lower HI values indicate
translations that remain faithful to the source, whereas
higher HI values point to significant hallucination.
This formulation allows for a granular assessment of
how each component of the evidence-based system
contributes to reducing different classes of errors.
Beyond numerical metrics, a qualitative analysis
illuminates the specific conditions under which
fabrications arise and how external validation curtails
them. Detailed error typology tables reveal that
dictionary-based checks excel at catching specialized
vocabulary issues, while semantic alignment modules
are adept at spotting more subtle divergences.
Knowledge graph validations, on the other hand,
primarily target named entities and relational integrity.

7



Transactions on Artificial Intelligence, Machine Learning, and Cognitive Systems

In some samples, the pipeline flags an error that
turns out to be a legitimate expression unknown
to the dictionary but semantically aligned with
the source context. These instances lead to false
positives, underscoring the balancing act required
when applying rigid evidence rules to evolving
language usage. Human evaluators help refine
these thresholds, suggesting that domain-specific
expansions or dynamic updates to the external
references can mitigate false alarms.

Statistical analysis of the experiment’s results across
the four language pairs reveals interesting trends. For
high-resource language pairs, like English–Spanish
and English–German, baseline hallucinations are less
frequent, and the introduction of evidence-based
checks yields modest but tangible improvements. For
lower-resource settings, like English–Swahili, baseline
hallucination rates are substantially higher. In these
contexts, the pipeline leads to a more pronounced
reduction in false content. Domain-specific texts,
particularly those dealing with technical jargon,
benefit from dictionary-based checks, which sharply
reduce lexical fabrications. Conversely, knowledge
graph integration proves invaluable in legal or
medical texts abundant in named entities. The
synergy of these components often yields the most
significant performance gains, a finding consistent
with the hypothesis that multiple evidence streams are
necessary to capture the breadth of possible fabrication
modes.

Further introspection into model-specific behaviors
uncovers how different architectures respond to
evidence augmentation. Transformer-based models,
while strong in capturing long-distance dependencies,
show occasional vulnerabilities in translating very rare
terms under domain constraints. In these instances,
dictionary validation curbs the model’s tendency
to invent plausible-sounding but incorrect terms.
Recurrent models, which rely heavily on contextual
cues from hidden states, gain more from alignment
checks, suggesting that explicit cross-lingual
embeddings help rectify their comparatively lower
capacity for global context modeling. Meanwhile,
convolutional models display a mix of behaviors,
sometimes excelling in short sentence translations
but faltering on longer sequences involving multiple
clauses. Across all architectures, the introduction of
evidence-based modules consistently lowers the HI,
confirming the utility of combining internal neural
inferences with external validation signals.

Human judgment remains the ultimate arbiter of
translation fidelity. Qualitative feedback from experts
highlights that while the pipeline avoids many glaring
errors, it may still struggle with nuanced idiomatic
expressions or newly coined terms absent from
dictionaries and knowledge graphs. In addition,
experts emphasize the desirability of interactive or
incremental validation, enabling them to selectively
override flagged segments when context justifies it.
The concluding analyses underscore the pivotal role
of robust external evidence in elevating translation
reliability and provide direction for refining these
strategies to accommodate evolving language patterns
[7].

6 Discussion of Challenges and Future
Directions

Despite the advancements reported, the
implementation of cross-lingual evidence-based
strategies for detecting fabrications in neural
translation systems faces several unresolved
challenges. First, the ongoing evolution of languages
complicates dictionary-based and knowledge
graph-based validations. Many languages grow
through the adoption of loanwords, the creation of
neologisms, or the reclamation of regional dialects that
were previously under-documented. These constant
updates require continuous curation of external
references, or else the system might flag legitimate
terms as hallucinations. Although crowdsourcing
and community-driven initiatives have proven helpful
in updating lexical repositories, the incorporation
of these changes into production-grade pipelines
remains a non-trivial undertaking [8].
A second challenge lies in the inherent
domain-dependence of many verification methods.
A dictionary or knowledge graph tailored for legal
texts may have limited utility in medical or technical
domains. Conversely, expanding a knowledge base
to cover multiple domains can lead to an unwieldy
repository that increases query times and introduces
potential conflicts in term usage. This domain
specificity underscores the need for modular designs
that allow easy swapping or customization of external
resources. Another approach might incorporate
machine-learning techniques that learn to weigh
the relevance of domain-specific references on a
per-document or per-segment basis, thus mitigating
performance degradations when switching contexts
[5], [9].
Third, potential biases embedded in the training data

8



Transactions on Artificial Intelligence, Machine Learning, and Cognitive Systems

and the external evidence sources can undermine
the reliability of these strategies [10]. If a dictionary
or knowledge graph predominantly represents one
cultural or regional perspective, the system may
inadvertently propagate those biases, flagging terms
from marginalized dialects as errors. Conversely, it
may fail to detect certain types of fabrications that
arise from underrepresented viewpoints [11], [12].
Addressing such biases requires not only technical
adjustments but also broader sociolinguistic awareness
in dataset selection [13], curation, and annotation
processes. Ethics boards or cross-disciplinary
committees may need to be consulted when deploying
translation systems in sensitive or culturally diverse
environments.

The computational overhead of evidence-based
validation is another significant issue. Integrating
dictionary lookups, alignment checks, and knowledge
graph queries into a real-time inference pipeline can
strain memory and processing resources, especially
in edge computing scenarios or large-scale web
services that handle millions of translation requests
daily. Research into more efficient alignment
algorithms, caching strategies, or approximate
matching techniques may help alleviate these
overheads. Likewise, hardware accelerations—such
as GPUs specialized for matrix operations or
domain-specific accelerators—can potentially be
harnessed to streamline external evidence checks
without compromising throughput.

In addition to these challenges, future directions
include expanding the scope of evidence-based
strategies to cover morphological and phonological
dimensions of language. Many current methods focus
on lexical and named-entity consistency but overlook
subtler aspects of linguistic variation. Morphological
mismatches can lead to inaccuracies in languages
with complex inflectional systems. Extending
cross-lingual embedding models to incorporate
morphological features, or developing specialized
subword dictionaries that account for inflectional
patterns, may offer improvements in capturing
nuanced fabrications. Researchers might also examine
the intersection of prosody and semantics in spoken
language translation systems, an area that remains
under-explored in large-scale neural frameworks [14],
[15].

Finally, collaborative pipelines that combine generative
models with retrieval modules or symbolic reasoning
engines hold promise. Retrieval modules can supply

candidate phrases or factual statements from large
corpora, while symbolic reasoning can ascertain logical
consistency. By merging these paradigms, the next
generation ofmachine translation systemsmay achieve
a level of factual grounding far surpassing current
capabilities. Although these developments demand
significant engineering and conceptual innovations,
they align with the emerging vision of machine
intelligence that integrates symbolic and sub-symbolic
approaches to better handle the intricate tapestry of
human language. These trajectories underscore that
the effort to eradicate fabrications in neural translation
is not solely a matter of incremental improvement
but an ongoing reimagining of how data-driven and
knowledge-based processes can be fused [13].

7 Conclusion
The analysis presented here demonstrates that
cross-lingual evidence-based strategies offer a
substantial layer of protection against fabrications
in neural translation systems [16], [17]. Through
the integration of dictionaries, semantic alignment
tools, and knowledge graph validation, the incidence
of hallucinatory outputs is reduced across multiple
language pairs and domains. These methods
mitigate both minor lexical mismatches and major
factual distortions, underscoring the versatility of
hybrid approaches that merge data-driven inference
with curated external references. Results from
automated metrics and human evaluations converge
on the conclusion that such evidence-based pipelines
substantially enhance translation fidelity, especially for
specialized or high-stakes applications. Nonetheless,
this study has highlighted the numerous challenges
that must be addressed before fully robust deployment
becomes possible. Continuous updates to external
resources, careful handling of domain dependencies,
and vigilance regarding data biases remain critical.
Future work will likely explore the integration of
morphological and phonological features, further
optimization of computational overhead, and deeper
fusions of retrieval-based and symbolic reasoning
paradigms. These directions promise a new generation
of translation systems that align more closely with
the complex and rapidly evolving tapestry of human
language, bringing us closer to a scenario in which
mistranslations born from hallucination become rare
exceptions rather than routine risks.
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