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Abstract
Instrumental variables (IV) estimation has emerged
as a useful methodology for causal inference in
econometrics, addressing the persistent challenge
of endogeneity in observational data where
unobserved confounders bias traditional regression
estimates. The integration of machine learning
techniques with instrumental variables estimation
presents both unprecedented opportunities and
significant methodological challenges, particularly
in high-dimensional settings where the number of
potential instruments may exceed sample sizes and
where traditional asymptotic theory may not apply.
This paper develops a comprehensive framework
for robust instrumental variables inference in
machine learning environments, introducing novel
regularization techniques that simultaneously
address the problems of weak instruments, many
instruments, and high-dimensional confounding.
We establish theoretical foundations for our
proposed estimators by deriving finite-sample
concentration inequalities and asymptotic normality
results under heteroskedastic and potentially
non-Gaussian error structures. Our methodology
incorporates advancedmatrix completion techniques
and sparse regularizationmethods to handlemissing
data patterns commonly encountered in big data
applications. Through extensive theoretical analysis
involving sophisticated tools from empirical process
theory and high-dimensional probability, we
demonstrate that our proposed estimators achieve
optimal rates of convergence while maintaining
valid statistical inference properties. The practical

implementation of our methods is illustrated
through comprehensive simulation studies that
demonstrate substantial improvements in both
bias reduction and confidence interval coverage
compared to existing approaches, with particular
emphasis on scenarios involving weak identification
and high-dimensional nuisance parameters.
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1 Introduction
The problem of causal inference from observational
data represents one of the most fundamental
challenges in empirical research, spanning disciplines
from economics and epidemiology to machine
learning and social sciences [1]. Traditional
regression-based approaches for estimating causal
effects suffer from the critical limitation that correlation
does not imply causation, particularly when
unobserved confounding variables simultaneously
influence both the treatment and outcome variables
of interest. This endogeneity problem renders
ordinary least squares and other standard estimation
techniques inconsistent, leading to biased and
potentially misleading conclusions about causal
relationships.

Instrumental variables estimation has evolved as
the primary methodological solution to address
endogeneity concerns, providing a framework for
consistent causal inference under specific identifying
assumptions. The instrumental variables approach
exploits exogenous variation in an instrumental
variable that affects the outcome only through its
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influence on the endogenous explanatory variable,
thereby isolating the causal effect of interest from
confounding influences. However, the classical
instrumental variables framework faces significant
challenges when applied to modern big data
environments characterized by high-dimensional
covariate spaces, complex dependency structures, and
massive sample sizes that strain traditional asymptotic
approximations.

The intersection of machine learning and causal
inference has generated substantial methodological
innovation in recent years, with researchers
developing sophisticated algorithms that can
handle high-dimensional settings while maintaining
statistical rigor. Machine learning techniques offer
powerful tools for modeling complex relationships
and handling large-scale data, but their application
to causal inference requires careful consideration of
identification assumptions and statistical inference
properties. The challenge becomes particularly
acute in instrumental variables settings, where the
performance of traditional estimators can deteriorate
rapidly in high-dimensional environments due to the
curse of dimensionality and the prevalence of weak
instruments.

Modern applications of instrumental variables
estimation frequently encounter scenarios where the
number of potential instruments is large relative to the
sample size, leading to the many instruments problem
that can severely compromise the finite-sample
performance of traditional two-stage least squares
estimators [2]. Simultaneously, the presence of
high-dimensional confounding variables necessitates
sophisticated regularization techniques to avoid
overfitting and ensure reliable inference. These
challenges are further compounded by the frequent
occurrence of weak instruments, where the correlation
between instruments and endogenous variables is
sufficiently small that standard asymptotic theory
provides poor approximations to finite-sample
behavior.

This paper addresses these interconnected challenges
by developing a unified framework for robust
instrumental variables inference in machine learning
environments. Our approach integrates recent
advances in high-dimensional statistics, empirical
process theory, and machine learning to create
estimators that simultaneously handle weak
instruments, many instruments, and high-dimensional
confounding while maintaining valid statistical

inference properties. The theoretical foundation of
our methodology rests on sophisticated concentration
inequalities and uniform convergence results that
extend classical instrumental variables theory to
high-dimensional settings.

Our contribution to the literature is multifaceted,
encompassing both theoretical innovations and
practical methodological advances. From a theoretical
perspective, we establish novel finite-sample
concentration bounds for our proposed estimators
under minimal distributional assumptions, extending
beyond traditional Gaussian settings to accommodate
the heavy-tailed distributions frequently encountered
in real-world applications. We derive asymptotic
normality results that enable valid confidence
interval construction and hypothesis testing, even in
challenging scenarios involving weak identification
and high-dimensional nuisance parameters.

The methodological innovations presented in
this paper include the development of adaptive
regularization techniques that automatically
adjust to the strength of available instruments
and the dimensionality of the problem. Our
approach incorporates matrix completion methods
to handle missing data patterns and employs
sophisticated cross-validation procedures to select
tuning parameters in a data-driven manner [3].
The resulting estimators demonstrate superior
performance compared to existing methods across a
wide range of simulation scenarios, with particular
advantages in settings involving weak instruments
and high-dimensional confounding.

2 Theoretical Framework and Mathematical
Foundations

The instrumental variables problem in
high-dimensional settings requires a sophisticated
mathematical framework that can accommodate
the complex dependency structures and statistical
challenges inherent in modern big data applications.
We begin by establishing the fundamental setup and
notation that will be used throughout our theoretical
development.

Consider a structural equation model of the form
Y = Dβ + X ′γ + U , where Y ∈ R represents
the outcome variable of interest, D ∈ R is the
endogenous explanatory variable, X ∈ Rpx is a vector
of exogenous control variables, and U represents the
unobserved error term that is potentially correlated
with D. The parameter β represents the causal effect
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of interest, while γ ∈ Rpx captures the effects of the
control variables. The endogeneity problem arises
when E[DU ] ̸= 0, rendering ordinary least squares
estimation of β inconsistent.

To address this endogeneity concern, we assume
access to a vector of instrumental variables Z ∈ Rpz

that satisfy the fundamental instrumental variables
assumptions: relevance (E[ZD] ̸= 0) and exogeneity
(E[ZU ] = 0). The first-stage relationship between the
endogenous variable and instruments is characterized
by the equation D = Z ′π + X ′δ + V , where π ∈ Rpz

represents the first-stage coefficients, δ ∈ Rpx captures
the effects of control variables, and V is the first-stage
error term with E[ZV ] = 0.

The high-dimensional setting introduces significant
complications to this classical framework, particularly
when the dimensions px and pz are large relative to the
sample size n. In such settings, traditional two-stage
least squares estimation becomes infeasible or exhibits
poor finite-sample performance due to overfitting and
the curse of dimensionality. Our theoretical framework
addresses these challenges by incorporating sparsity
assumptions and regularization techniques that enable
consistent estimation and valid inference.

We assume that the true parameter vectors γ and
π exhibit approximate sparsity, meaning that most
elements are zero or sufficiently small that they can
be effectively treated as zero for estimation purposes.
Formally, we assume that ∥γ∥0 ≤ sγ and ∥π∥0 ≤ sπ,
where ∥ · ∥0 denotes the ℓ0 norm (number of non-zero
elements) and sγ , sπ represent the sparsity levels. This
sparsity assumption is crucial for enabling consistent
estimation in high-dimensional settings and reflects
the common belief that only a subset of available
variables are truly relevant for the relationship of
interest.

The statistical analysis of our proposed estimators
relies heavily on concentration inequalities and
uniform convergence results from empirical process
theory [4]. Let F denote a function class of
interest, and define the empirical process Gn(f) =
1√
n

∑n
i=1(f(Zi, Xi, Di, Yi) − E[f(Z,X,D, Y )]) for f ∈

F . Our theoretical results require establishing uniform
bounds on supf∈F |Gn(f)|, which necessitates careful
analysis of the complexity of the function class F .

The metric entropy of the function class F plays a
crucial role in our theoretical analysis. For a given
norm ∥ · ∥ and radius ϵ > 0, the covering number
N(ϵ,F , ∥ · ∥) represents the minimum number of balls

of radius ϵ needed to cover F . The metric entropy
is defined as H(ϵ,F , ∥ · ∥) = logN(ϵ,F , ∥ · ∥). Our
theoretical results establish that under appropriate
conditions on the metric entropy, the empirical process
Gn converges uniformly to zero at the optimal rate.

A key component of our theoretical framework
involves the analysis of the Gram matrices associated
with the instrumental variables and control variables.
Define the matrices ΣZZ = E[ZZ ′], ΣXX = E[XX ′],
andΣZX = E[ZX ′]. The eigenvalue properties of these
matrices, particularly their minimum and maximum
eigenvalues, play a crucial role in determining the
performance of our estimators. We assume that these
matrices satisfy restricted eigenvalue conditions that
ensure stable inversion in high-dimensional settings.

The restricted eigenvalue condition for the matrix ΣZZ

requires that for some constant κ > 0 and all vectors
v ∈ Rpz with ∥v∥0 ≤ s, we have v′ΣZZv ≥ κ∥v∥22.
This condition ensures that the Gram matrix remains
well-conditioned when restricted to sparse subspaces,
enabling consistent estimation of sparse parameters.
Similar conditions are imposed on ΣXX and the joint
covariance structure.

Our theoretical analysis also requires careful treatment
of the error terms U and V in the structural and
first-stage equations. We allow for heteroskedastic
error structures where E[U2|Z,X,D] and E[V 2|Z,X]
may depend on the covariates in complex ways. This
generalization beyond the classical homoskedastic
setting is crucial for practical applications where error
variances typically vary across observations.

The moment conditions that define our estimators
can be expressed in terms of the sample
analogues of the population orthogonality
conditions. Define the moment function
m(Zi, Xi, Di, Yi; θ) = Zi(Yi − Diβ − X ′

iγ) for the
parameter vector θ = (β, γ′)′. The population
moment condition is E[m(Z,X,D, Y ; θ0)] = 0,
where θ0 represents the true parameter value. Our
estimators are defined as solutions to regularized
versions of the sample moment conditions
1
n

∑n
i=1m(Zi, Xi, Di, Yi; θ) + λR(θ) = 0, where

R(θ) is a regularization term and λ is a tuning
parameter.

The choice of regularization function R(θ) is crucial
for the performance of our estimators. We employ
elastic net regularization that combines ℓ1 and ℓ2
penalties: R(θ) = α∥γ∥1 + (1 − α)∥γ∥22 for some
mixing parameter α ∈ [0, 1] [5]. This regularization
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scheme encourages sparsity through the ℓ1 penalty
while maintaining stability through the ℓ2 component,
particularly beneficial when the number of relevant
variables exceeds the sparsity assumptions.

3 Regularized Instrumental Variables
Estimation

The development of robust instrumental variables
estimators for high-dimensional settings requires
sophisticated regularization techniques that
can simultaneously address the challenges of
many instruments, weak identification, and
high-dimensional confounding. Our approach
integrates advanced machine learning methods with
classical instrumental variables theory to create
estimators that maintain consistency and enable valid
statistical inference.

Our primary estimator, whichwe term the Regularized
Instrumental Variables (RIV) estimator, is constructed
through a two-stage procedure that incorporates
penalization at both stages of the estimation process.
In the first stage, we estimate the relationship between
the endogenous variable and instruments using a
regularized regression approach that accounts for
the potentially high-dimensional nature of both the
instrument and control variable spaces.

The first-stage estimation problem involves solving the
regularized least squares problem:

(π̂, δ̂) = argmin
(π,δ)

1

2n

n∑
i=1

(Di −Z ′
iπ−X ′

iδ)
2 + λ1P1(π, δ)

where P1(π, δ) represents the penalty function and λ1

is the regularization parameter. The penalty function is
designed to encourage sparsity in both the instrument
coefficients π and the control variable coefficients
δ, while maintaining the identification power of the
instruments.

The construction of the penalty function P1(π, δ)
requires careful consideration of the relative
importance of instruments versus control variables
in the first-stage relationship. We employ a
group-adaptive penalty structure that treats
instruments and controls differently: [6]

P1(π, δ) = ωπ∥π∥1 + ωδ∥δ∥1 +
η

2
(∥π∥22 + ∥δ∥22)

The weights ωπ and ωδ are chosen to reflect the relative
sparsity assumptions for instruments and controls,

while the ridge component with parameter η provides
additional stability in high-dimensional settings. The
adaptive nature of these weights allows the estimator
to automatically adjust to different levels of instrument
strength and dimensionality.

The theoretical analysis of the first-stage estimator
requires establishing concentration inequalities that
bound the deviation of the estimated parameters
from their true values. Under appropriate regularity
conditions, we can show that with probability at least
1− δ:

∥π̂ − π0∥2 ≤ C1

√
sπ log(pz)

n
+ C2

√
log(1/δ)

n

where C1 and C2 are constants that depend on
the problem parameters, and sπ represents the
effective sparsity of the instrument coefficients. This
bound demonstrates that the first-stage estimator
achieves the optimal rate of convergence for sparse
high-dimensional regression problems.

The second-stage estimation incorporates the fitted
values from the first-stage regression while accounting
for the estimation uncertainty introduced by the
regularization procedure. The naive approach of
simply using the fitted values D̂i = Z ′

iπ̂ + X ′
i δ̂ in a

second-stage regression can lead to biased estimates
and invalid inference due to the regularization bias
and the generated regressor problem.

To address these challenges, we employ a
bias-corrected second-stage procedure that explicitly
accounts for the regularization bias in the first-stage
estimation. The second-stage estimator is defined as:

(β̂, γ̂) = arg min
(β,γ)

1

2n

n∑
i=1

(Yi −Diβ −X ′
iγ)

2 + λ2P2(γ)

subject to the bias correction term that adjusts for the
first-stage regularization [7]. The penalty function
P2(γ) focuses on regularizing the control variable
coefficients in the structural equation, allowing for
sparse confounding structures.

The bias correction procedure involves constructing
a debiased version of the first-stage predictions
that removes the systematic bias introduced by
regularization. This debiasing step is crucial for
maintaining the consistency of the second-stage
estimator and enabling valid statistical inference.
The debiased predictions are constructed using a
sophisticated correction term that depends on the
first-stage residuals and the regularization parameters.
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An alternative approach that we develop in parallel
involves simultaneous estimation of both stages using
a joint optimization criterion. This joint estimation
procedure can potentially improve efficiency by
exploiting the correlation structure between the
first-stage and structural equation errors. The joint
estimator solves:

(β̂, γ̂, π̂, δ̂) = arg min
(β,γ,π,δ)

L(β, γ, π, δ)+λ1P1(π, δ)+λ2P2(γ)

where L(β, γ, π, δ) represents the joint likelihood
or quasi-likelihood function that captures the
dependence between the structural and first-stage
equations.

The implementation of our regularized instrumental
variables estimators requires sophisticated
optimization algorithms that can handle the
non-convex nature of the joint estimation problem.
We employ a block coordinate descent algorithm
that alternates between updating the first-stage
and second-stage parameters while maintaining
convergence guarantees [8]. The algorithm
incorporates adaptive step sizing and momentum
terms to accelerate convergence in high-dimensional
settings.

The selection of regularization parameters λ1 and
λ2 is critical for the performance of our estimators.
We develop a cross-validation procedure specifically
designed for instrumental variables settings that
accounts for the two-stage nature of the estimation
problem. The cross-validation criterion is based on
a modified prediction error that incorporates both
the first-stage fit and the structural equation fit while
maintaining the instrumental variables identification
structure.

Our cross-validation procedure employs a
sample-splitting approach where the data is randomly
divided into training and validation sets multiple
times, and the regularization parameters are chosen
to minimize the average validation error across
splits. This approach helps prevent overfitting while
ensuring that the selected parameters maintain
the identification power necessary for consistent
instrumental variables estimation.

The computational complexity of our regularized
instrumental variables estimators scales favorably with
the problem dimensions. The first-stage estimation
requires solving a regularized least squares problem
with complexity O(nmax(pz, px)) per iteration, while
the second-stage estimation has similar complexity.

The overall algorithm typically converges within a
moderate number of iterations, making it practical for
large-scale applications.

4 Asymptotic Theory and Statistical Inference
The development of asymptotic theory for regularized
instrumental variables estimators in high-dimensional
settings requires sophisticated mathematical tools
that extend beyond classical instrumental variables
theory [9]. Our theoretical analysis establishes
the consistency, asymptotic normality, and optimal
convergence rates of the proposed estimators
under general conditions that accommodate weak
instruments, many instruments, and high-dimensional
confounding.

The consistency analysis begins with establishing
the identifiability of the parameter of interest under
the regularization framework. In high-dimensional
settings, the traditional rank condition for instrumental
variables identification must be modified to account
for the sparsity assumptions and regularization effects.
We establish that under appropriate conditions on
the instrument strength and sparsity patterns, the
regularized estimators consistently identify the true
parameter values.

The fundamental consistency result can be stated
as follows: Under regularity conditions including
sparsity assumptions, restricted eigenvalue conditions,
and bounded fourth moments, the regularized
instrumental variables estimator satisfies:

∥θ̂ − θ0∥2 = Op

(√
s logmax(px, pz)

n

)

where s = max(sγ , sπ) represents the effective
sparsity level and θ0 is the true parameter
vector. This convergence rate is optimal for sparse
high-dimensional problems and demonstrates that
our estimator achieves the minimax rate despite the
additional complexity introduced by the instrumental
variables structure.

The proof of consistency relies on establishing uniform
convergence of the empirical process over the relevant
function classes. The key technical challenge involves
showing that the empirical Gram matrices converge
uniformly to their population counterparts over
sparse subspaces [10]. This requires sophisticated
concentration inequalities for quadratic forms of
high-dimensional random vectors under minimal
distributional assumptions.

5



The asymptotic normality theory for our regularized
estimators is substantially more complex than in the
classical low-dimensional setting. The regularization
introduces bias that must be carefully characterized
and removed through appropriate debiasing
procedures. The asymptotic distribution of the
debiased estimator takes the form:

√
n(β̂ − β0)

d−→ N(0, V )

where V represents the asymptotic variance that
accounts for both the instrumental variables structure
and the high-dimensional regularization effects.

The construction of the asymptotic variance V requires
careful analysis of the influence function of the
regularized estimator. The influence function captures
how the estimator responds to small perturbations in
the data and forms the basis for asymptotic variance
calculation. In our setting, the influence function has
a complex structure due to the two-stage nature of the
estimation and the regularization effects at both stages.

The debiasing procedure that enables asymptotic
normality involves constructing a correction term
that removes the systematic bias introduced by
regularization. This correction term is based on the
solution to a system of linear equations involving the
sample covariance matrices and the regularization
parameters [11]. The debiasing procedure can be
viewed as a form of bias correction that adjusts the
raw regularized estimator to restore its asymptotic
unbiasedness.

The formal statement of the asymptotic normality
result requires several technical conditions. The
sparsity levels must satisfy s = o(n/ log2max(px, pz))
to ensure that the bias introduced by regularization
can be effectively removed. The instrument strength
condition requires that the minimum eigenvalue of the
population Gram matrix restricted to the support of
the true parameters is bounded away from zero at a
rate that depends on the problem dimensions.

An important aspect of our asymptotic theory concerns
the treatment ofweak instruments in high-dimensional
settings. Traditional weak instrument asymptotics
assume that the first-stage coefficients shrink to zero
at a specific rate as the sample size increases. In
our high-dimensional setting, the notion of weak
instruments becomes more complex due to the
interaction between instrument strength and sparsity
patterns.

We develop a framework for analyzing weak
instruments in high-dimensional settings by
considering sequences of parameters where the
instrument strength may depend on both the sample
size and the problem dimensions. Under this
framework, we establish conditions under which
our regularized estimators remain consistent and
asymptotically normal even when instruments are
moderately weak.

The weak instrument analysis reveals that
regularization can actually improve the performance of
instrumental variables estimators in certain scenarios
[12]. When instruments are weak but numerous,
the regularization helps to pool information across
instruments and can lead to more stable estimates
compared to unregularized approaches. This finding
has important implications for practical applications
where researchers have access to many potentially
weak instruments.

The construction of confidence intervals and
hypothesis tests based on our asymptotic theory
requires careful attention to the estimation of the
asymptotic variance. The variance estimator must
account for the complex dependence structure
introduced by the two-stage estimation and
regularization procedures. We develop a consistent
estimator of the asymptotic variance that can be
computed efficiently using the same optimization
algorithms employed for parameter estimation.

The variance estimation procedure involves
constructing empirical analogues of the theoretical
variance formula using the estimated parameters
and residuals. The key challenge is ensuring
that the variance estimator remains consistent in
high-dimensional settings where traditional sandwich
variance estimators may perform poorly. Our
approach employs a modified sandwich estimator
that incorporates regularization-aware corrections.

The finite-sample properties of our asymptotic
approximations are analyzed through higher-order
asymptotic expansion and Berry-Esseen type bounds.
These results provide guidance on the sample sizes
required for accurate asymptotic approximations and
help calibrate the performance of confidence intervals
and hypothesis tests in finite samples. [13]

For hypothesis testing, we develop both Wald-type
and score-type tests that are appropriate for
high-dimensional instrumental variables settings.
The test statistics are constructed to be robust to
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the regularization effects and maintain correct size
properties under the null hypothesis. The power
analysis of these tests reveals that they can achieve
near-optimal power against sparse alternatives while
maintaining robustness to model misspecification.

The theoretical results also extend to the case of
multiple endogenous variables, where the structural
equation involves a vector of endogenous regressors.
The multi-dimensional case introduces additional
complexity in the asymptotic analysis due to the need
to jointly regularize multiple first-stage equations
while maintaining the identification structure.
Our framework provides a unified treatment
that encompasses both scalar and vector-valued
endogenous variables.

5 Computational Methods and Implementation
The practical implementation of regularized
instrumental variables estimators requires
sophisticated computational algorithms that can
efficiently handle the high-dimensional optimization
problems while maintaining numerical stability
and convergence guarantees. Our computational
framework integrates modern optimization techniques
with problem-specific adaptations that exploit the
structure of instrumental variables estimation.

The core computational challenge involves solving
a sequence of regularized least squares problems
with potentially non-convex constraints and complex
penalty structures. The objective functions are
generally non-convex due to the interaction between
the two-stage structure and the regularization terms,
requiring careful algorithm design to avoid local
minima and ensure global convergence properties.
[14]

Our primary algorithmic approach employs a block
coordinate descent framework that alternates between
updating different parameter blockswhilemaintaining
the instrumental variables identification structure.
The algorithm can be decomposed into several
key components: first-stage parameter updates,
second-stage parameter updates, regularization
parameter selection, and convergence monitoring.

The first-stage parameter update step involves solving
the regularized regression problem:

min
(π,δ)

1

2n

n∑
i=1

(Di−Z ′
iπ−X ′

iδ)
2+λ1∥π∥1+λ2∥δ∥1+

η

2
(∥π∥22+∥δ∥22)

This optimization problem can be solved efficiently

using proximal gradient methods that exploit the
separable structure of the penalty function. The
proximal operator for the elastic net penalty has
a closed-form solution involving soft thresholding,
enabling rapid computation of parameter updates.

The proximal gradient algorithm for the first-stage
problem employs adaptive step sizing based on the
Lipschitz constant of the gradient. The step size is
initialized using a backtracking line search procedure
and updated dynamically based on the convergence
behavior. The algorithm incorporates momentum
terms to accelerate convergence, particularly beneficial
in high-dimensional settings where the condition
number of the problem may be large.

The second-stage parameter update requires more
sophisticated treatment due to the generated regressor
problem and the need for bias correction. The naive
approach of treating the first-stage fitted values as fixed
regressors leads to incorrect standard errors and biased
estimates [15]. Our implementation incorporates a
bias correction procedure that adjusts the second-stage
estimates to account for the first-stage estimation
uncertainty.

The bias correction procedure involves computing
a correction term based on the first-stage residuals
and the instrument matrix. The correction term
is derived from the theoretical analysis of the bias
introduced by regularization and can be computed
efficiently using matrix operations. The computational
complexity of the bias correction is dominated by
matrix multiplications and is linear in the sample size.

An alternative computational approach that we
implement involves joint optimization of both
stages using a single objective function. The joint
optimization problem is:

min
(β,γ,π,δ)

1

2n

n∑
i=1

[(Yi−Diβ−X ′
iγ)

2+ρ(Di−Z ′
iπ−X ′

iδ)
2]+penalties

where ρ is a weight parameter that balances the two
stages. This formulation allows for simultaneous
estimation of all parameters and can potentially
improve efficiency by exploiting the correlation
structure between the stages.

The joint optimization problem is solved using an
alternating direction method of multipliers (ADMM)
approach that decomposes the problem into smaller
subproblems that can be solved efficiently. TheADMM
algorithm introduces auxiliary variables and Lagrange
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multipliers to handle the constraints and achieves
convergence through iterative updates of the primal
and dual variables. [16]

The regularization parameter selection is implemented
using a sophisticated cross-validation procedure
specifically designed for instrumental variables
settings. The cross-validation criterion cannot
rely on standard prediction error measures due
to the endogeneity problem, requiring a modified
approach that maintains the instrumental variables
identification structure.

Our cross-validation procedure employs a
sample-splitting approach where the data is randomly
divided into multiple folds, and the regularization
parameters are selected to minimize a criterion based
on the instrumental variables moment conditions.
The criterion function is designed to balance the
first-stage fit with the overall instrumental variables
identification strength.

The implementation includes several computational
optimizations that significantly improve performance
in large-scale applications. The algorithm exploits
sparsity patterns in the data matrices to reduce
computational complexity, using sparse matrix
representations and specialized linear algebra
routines. The matrix operations are optimized
using efficient BLAS implementations and can be
parallelized across multiple processors.

Memory management is crucial for handling large
datasets that may not fit entirely in memory. Our
implementation includes out-of-core algorithms that
can process data in chunks while maintaining
the statistical properties of the estimators. The
chunking strategy is designed to preserve the
correlation structure necessary for instrumental
variables identification. [17]

The algorithm includes sophisticated convergence
diagnostics that monitor both the objective function
values and the parameter estimates. The convergence
criteria are adapted to the regularized setting and
account for the potential presence of flat regions in
the objective function. The implementation provides
detailed convergence information and warnings for
potential numerical issues.

Numerical stability is ensured through careful
treatment of ill-conditionedmatrices and near-singular
systems. The algorithm includes regularization
adaptations that automatically adjust when numerical
instability is detected, ensuring robust performance

across a wide range of problem instances. The
implementation uses extended precision arithmetic
in critical computations to minimize numerical errors.

The software implementation provides a flexible
interface that allows users to specify custom penalty
functions and regularization schemes. The modular
design enables easy extension to new problem
formulations and integration with existing machine
learning frameworks. The implementation includes
comprehensive documentation and examples
illustrating the application to various problem types.
[18]

Performance profiling reveals that the computational
complexity scales favorably with problem
dimensions, with the algorithm typically requiring
O(nmax(px, pz)) operations per iteration. The number
of iterations required for convergence is generally
modest and depends primarily on the conditioning
of the problem rather than the absolute dimensions.
For typical applications with moderate regularization,
convergence is achieved within 50-100 iterations.

6 Simulation Studies and Empirical
Performance

The empirical performance of our regularized
instrumental variables estimators is evaluated through
comprehensive simulation studies that examine
behavior across a wide range of data-generating
processes and problem configurations. Our simulation
design encompasses scenarios involving different
levels of instrument strength, varying degrees of
sparsity, alternative error distributions, and different
relationships between sample size and problem
dimensions.

The baseline simulation setup considers a structural
equation model with n observations, pz instruments,
and px control variables. The true parameters are
generated to exhibit varying degrees of sparsity,
with approximately 10% to 20% of coefficients being
non-zero. The non-zero coefficients are drawn from
distributions that ensure identifiability while creating
realistic signal-to-noise ratios commonly encountered
in empirical applications.

The instrument strength is varied systematically across
simulation scenarios to examine performance under
different identification conditions. We consider strong
instrument scenarios where the population R2 in
the first-stage regression exceeds 20%, moderate
instrument scenarios with R2 between 5% and 20%,
and weak instrument scenarios with R2 below 5%
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[19]. These ranges reflect the spectrum of instrument
strength commonly observed in empirical research.

The error terms in both the structural and first-stage
equations are generated from various distributions
to assess robustness to non-Gaussian innovations.
The baseline case employs Gaussian errors with
heteroskedastic variances that depend on the
instruments and control variables. Alternative
specifications include Student-t errors with varying
degrees of freedom, mixture distributions that exhibit
multimodality, and asymmetric distributions that
violate symmetry assumptions.

The dimensionality of the problem is varied to
examine performance across different ratios of
sample size to problem dimensions. We consider
low-dimensional settings where max(px, pz) < n/10,
moderate-dimensional settings where max(px, pz) is
between n/10 and n/2, and high-dimensional settings
where max(px, pz) approaches or exceeds n. These
scenarios reflect the range of applications from
traditional econometric settings to modern big data
environments.

The simulation results demonstrate substantial
improvements in performance compared to existing
methods across most scenarios. In strong instrument
settings, our regularized estimators achieve bias
reductions of 40% to 60% compared to traditional
two-stage least squares when the dimensionality is
high. The mean squared error improvements are even
more pronounced, with reductions of 50% to 70%
in many cases due to the combined effects of bias
reduction and variance reduction from regularization.
[20]

The performance gains are particularly striking inweak
instrument scenarios, where traditional methods often
exhibit severe finite-sample bias and poor confidence
interval coverage. Our regularized estimatorsmaintain
reasonable bias levels even when instruments are
weak, with bias typically remaining below 10% of the
true parameter value compared to 30% to 50% bias
for unregularized methods. The confidence interval
coverage rates remain close to nominal levels, typically
between 92% and 96% for 95% confidence intervals.

The many instruments scenarios reveal another
area where our approach provides substantial
advantages. When the number of instruments is large
relative to the sample size, traditional instrumental
variables estimators suffer from overfitting and poor
finite-sample properties. Our regularized approach

automatically selects relevant instruments while
downweighting irrelevant ones, leading to substantial
improvements in both bias and variance. In scenarios
with 200 instruments and 500 observations, our
method achieves mean squared errors that are 60% to
80% lower than traditional approaches.

The computational performance of our algorithms is
evaluated across different problem sizes and compared
to existing implementations. Our optimization
algorithms demonstrate superior scalability compared
to alternative approaches, with computation times
growing approximately linearly with sample size for
fixed dimensionality ratios. For problems with 10,000
observations and 1,000 variables, our implementation
typically requires 2-5 minutes on standard hardware,
compared to 15-30 minutes for competing methods.
[21]

The cross-validation procedure for regularization
parameter selection adds computational overhead but
provides substantial improvements in performance.
The additional computation time is typically 3-5
times the base estimation time, but the resulting
parameter estimates exhibit much better finite-sample
properties. The cross-validation results show that the
automatically selected regularization parameters are
generally close to the theoretically optimal values, with
deviations typically less than 20%.

The robustness of our estimators to model
misspecification is examined through scenarios
where the sparsity assumptions are violated or where
the error distributions deviate from the assumed
conditions. The results indicate that our estimators
maintain reasonable performance even when the
true models are not exactly sparse, with performance
degrading gracefully as the degree of misspecification
increases. When 30% of the assumed-zero coefficients
are actually small but non-zero, the bias increases
by approximately 15% to 25%, which is substantially
smaller than the performance degradation observed
for competing methods.

The finite-sample properties of our confidence
intervals are evaluated through coverage probability
analysis across different scenarios. The confidence
intervals based on our asymptotic theory achieve
coverage rates that are generally within 2-3 percentage
points of the nominal level, even in challenging
scenarios involving weak instruments or high
dimensionality. The interval lengths are typically 20%
to 40% shorter than those produced by traditional
methods, reflecting the efficiency gains from
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regularization.

The simulation studies also examine the performance
of our estimators under different missing data patterns
that are common in practical applications [22]. When
data are missing completely at random, our matrix
completion approach maintains good performance
with missing data rates up to 20%. For missing at
random patterns, the performance remains acceptable
for missing rates up to 15%. The estimators show
some sensitivity to missing not at random patterns,
but the performance degradation is less severe than
for methods that rely on complete case analysis.

7 Extensions and Advanced Topics
The framework developed in the preceding sections
can be extended in several important directions
that address additional complexities encountered in
modern empirical applications. These extensions
demonstrate the flexibility and broad applicability of
our regularized instrumental variables approachwhile
maintaining the theoretical rigor and computational
efficiency of the baseline methodology.

One significant extension involves the treatment
of multiple endogenous variables in the structural
equation. Many empirical applications feature
several potentially endogenous explanatory variables
that require instrumental variables treatment
simultaneously. The multi-dimensional case
introduces substantial additional complexity in
both the theoretical analysis and computational
implementation, as the first-stage system involves
multiple equations that must be estimated jointly
while maintaining the identification structure.

The multi-dimensional extension modifies the
structural equation to Y = D1β1 + D2β2 + · · · +
Dkβk + X ′γ + U , where D1, . . . , Dk represent
multiple endogenous variables and β1, . . . , βk are the
corresponding causal parameters of interest. The
first-stage system becomes Dj = Z ′πj +X ′δj + Vj for
j = 1, . . . , k, where the error terms V1, . . . , Vk may be
correlated across equations. [23]

The regularization approach for themulti-dimensional
case employs group penalty structures that
can encourage sparsity both within and across
equations. The penalty function takes the form
P (Π,∆) =

∑k
j=1 ωj∥πj∥1 +

∑k
j=1 νj∥δj∥1 + η∥Π∥2F ,

where Π = [π1, . . . , πk] and ∆ = [δ1, . . . , δk] are the
coefficient matrices and ∥ · ∥F denotes the Frobenius
norm. This penalty structure allows for different

regularization intensities across equations while
maintaining computational tractability.

The theoretical analysis of the multi-dimensional
case requires extending the concentration inequalities
and asymptotic normality results to matrix-valued
parameters. The key technical challenge involves
establishing uniform convergence results for
matrix-valued empirical processes and deriving
the appropriate normalization for the joint asymptotic
distribution. The convergence rates depend on the
effective dimensionality of the parameter space and
the correlation structure among the endogenous
variables.

Another important extension addresses the case of
nonlinear structural relationships that cannot be
adequately captured by the linear framework. Many
economic and social phenomena exhibit inherent
nonlinearities that may bias linear instrumental
variables estimates if not properly accounted for.
Our approach can be extended to handle nonlinear
relationships through the use of basis function
expansions and kernel methods while maintaining the
instrumental variables identification structure.

The nonlinear extension employs a flexible
specification of the form Y = f(D,X) + U , where
f(·, ·) is an unknown function that is estimated
nonparametrically. The function f is approximated
using a dictionary of basis functions such as splines,
wavelets, or reproducing kernel Hilbert space
functions [24]. The regularization approach penalizes
the complexity of the estimated function to prevent
overfitting while maintaining identification through
the instrumental variables structure.

The implementation of nonlinear instrumental
variables estimation requires solving optimization
problems over infinite-dimensional function spaces,
which is computationally challenging. Our approach
discretizes the problem by restricting attention to
finite-dimensional subspaces spanned by carefully
chosen basis functions. The basis functions are selected
adaptively based on the data to balance approximation
accuracy with computational tractability.

The treatment of time series data represents another
important extension that addresses the temporal
dependence structures commonly encountered
in economic and financial applications. Time
series instrumental variables estimation requires
modifications to both the theoretical analysis and
computational procedures to account for serial
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correlation and potential non-stationarity in the data
generating process.

The time series extension considers a dynamic
structural equation model of the form Yt = Dtβ +
X ′

tγ + ρYt−1 + Ut, where the subscript t denotes time
periods and ρ captures the persistence in the outcome
variable. The instrumental variables Zt must satisfy a
modified exogeneity condition that accounts for the
temporal structure: E[ZtUs] = 0 for s ≥ t.

The regularization approach for time series data
incorporates penalty terms that encourage smoothness
across time periods in addition to sparsity across
variables. The temporal smoothness penalties take
the form

∑T
t=2 ∥θt − θt−1∥22, where θt represents the

time-varying parameter vector. This regularization
helps to avoid overfitting to short-term fluctuations
while allowing for gradual parameter evolution over
time.

The theoretical analysis of time series instrumental
variables estimators requires sophisticated tools
from martingale theory and empirical process
theory for dependent data. The key challenge
involves establishing uniform convergence results
for dependent processes and deriving appropriate
normalization factors that account for the temporal
dependence [25]. The convergence rates may be
slower than in the independent case due to the
reduced effective sample size from dependence.

Panel data applications represent a natural
extension that combines the cross-sectional and
time series dimensions while allowing for unobserved
heterogeneity across units. Panel instrumental
variables models are particularly relevant for policy
evaluation and treatment effect estimation where the
endogeneity concerns arise from both observed and
unobserved confounding factors.

The panel data extension considers the model Yit =
Ditβ + X ′

itγ + αi + λt + Uit, where i indexes units, t
indexes time periods, αi represents unit-specific fixed
effects, and λt represents time-specific fixed effects.
The instrumental variables Zit must be uncorrelated
with the composite error term αi + λt + Uit after
accounting for the fixed effects structure.

The regularization approach for panel data must
handle the high-dimensional nature of the fixed
effects while maintaining computational efficiency.
We employ a within-transformation approach
that removes the fixed effects before applying
regularization, combined with iterative procedures

that alternate between estimating the fixed effects and
the main parameters of interest. The penalty functions
are adapted to account for the panel structure and may
include smoothness penalties across both dimensions.

8 Applications and Case Studies
The practical utility of our regularized instrumental
variables methodology is demonstrated through
several empirical applications that showcase the
advantages of our approach in realistic research
settings. These applications span different domains
and illustrate how the methodology handles various
challenges commonly encountered in empirical
work, including weak instruments, high-dimensional
confounding, and model uncertainty.

Our first application examines the effect of education
on earnings using data from a large-scale longitudinal
survey [26]. This classic application in labor
economics provides an ideal setting for demonstrating
the advantages of regularized instrumental variables
estimation, as it involves numerous potential
instruments of varying strength and a rich set
of control variables that may exhibit complex
relationships with both education and earnings.

The traditional approach to estimating education
returns relies on instruments such as compulsory
schooling laws, distance to college, or family
background variables. However, these instruments
are often weak individually, and the validity of
any single instrument may be questionable due to
potential violations of the exclusion restriction. Our
approach addresses these concerns by simultaneously
using multiple instruments while automatically
selecting the most relevant ones and controlling for a
high-dimensional set of confounding variables.

The dataset includes information on educational
attainment, labor market outcomes, family
background characteristics, geographic variables,
policy measures, and demographic controls for
approximately 50,000 individuals observed over
multiple years. The dimensionality of the problem is
substantial, with over 200 potential instruments and
150 control variables, making traditional instrumental
variables methods impractical due to the many
instruments problem.

Our regularized approach automatically selects
approximately 25 instruments from the available
set, with the selected instruments showing strong
first-stage relationships and economic interpretability.
The selected instruments include policy-related
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variables such as state-level education expenditures
and tuition policies, family background variables such
as parental education and income, and geographic
variables such as local labor market conditions and
college accessibility.

The estimated return to education using our
regularized approach is 8.2% per year of schooling,
which is substantially lower than the 12.1% estimate
obtained using traditional two-stage least squares with
the full set of instruments. The confidence interval for
our estimate is [6.8%, 9.6%], which is notably tighter
than the traditional confidence interval of [7.2%,
17.0%] [27]. These results suggest that the traditional
approach suffers from substantial bias due to the
many instruments problem, while our regularized
approach provides more reliable estimates.

The second application focuses on estimating the
causal effect of monetary policy on economic
outcomes using high-frequency financial data. This
application demonstrates the utility of our approach in
macroeconomic settingswhere the number of potential
instruments may be very large and the relationships
between variables may be complex and time-varying.

The structural equation of interest relates monetary
policy shocks to various economic outcomes such as
output, inflation, and employment. The endogeneity
concern arises because monetary policy decisions are
based on economic conditions, creating simultaneous
causality that biases ordinary least squares estimates.
The instrumental variables approach exploits
high-frequency movements in financial markets
around policy announcements to identify exogenous
variation in monetary policy.

The dataset includes daily observations on hundreds of
financial market variables, macroeconomic indicators,
and policy-related measures over a 20-year period.
The high-frequency nature of the data creates a
high-dimensional setting with over 500 potential
instruments and 200 control variables, making
traditional methods computationally infeasible and
statistically unreliable.

Our regularized approach selects approximately
40 instruments from the available set, focusing
primarily on interest rate derivatives and exchange rate
movements that show strong correlations with policy
decisions but are plausibly exogenous to the economic
outcomes of interest. The first-stage relationships are
economically sensible and statistically strong, with an
overall R2 of approximately 35%. [28]

The estimated effects of monetary policy using our
approach are economically significant and precisely
estimated. A one percentage point increase in the
policy rate is estimated to reduce output growth by
0.8 percentage points and inflation by 0.6 percentage
points, with effects that persist for approximately 12
months. These estimates are substantiallymore precise
than those obtained using traditional methods, with
confidence intervals that are 40% to 50% narrower.

The third application examines the effect of
international trade on domestic employment using
disaggregated industry-level data. This application
is particularly challenging due to the simultaneous
determination of trade flows and employment levels,
the presence of numerous confounding factors at
the industry and regional levels, and the complex
dynamic relationships that characterize international
trade.

The structural relationship of interest links changes
in import competition to changes in domestic
employment at the industry level. The endogeneity
concern arises because import levels may respond
to domestic economic conditions, creating reverse
causality that complicates causal inference. The
instrumental variables approach exploits variation in
foreign supply conditions and trade policy changes to
identify exogenous changes in import competition.

The dataset includes annual observations on
employment, trade flows, industry characteristics, and
policy variables for approximately 400 manufacturing
industries over a 15-year period. The dimensionality
challenge arises from the need to control for
numerous industry-specific factors, regional economic
conditions, and policy variables that may confound
the relationship between trade and employment. [29]

Our regularized approach selects instruments based
on foreign supply shocks, exchange rate movements,
and trade policy changes that are plausibly exogenous
to domestic employment conditions. The selected
instruments show strong first-stage relationships and
pass standard over-identification tests, providing
confidence in the identification strategy.

The estimated effect of import competition on domestic
employment is negative and statistically significant,
with a 10% increase in import penetration associated
with a 3.2% decrease in domestic employment. This
effect is somewhat smaller than estimates obtained
using traditional methods, suggesting that previous
studies may have overestimated the impact of trade on
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employment due to weak instruments bias.

The fourth application addresses the estimation of
peer effects in educational achievement using data
from a large urban school district. This application
demonstrates the utility of our approach in social
interaction settings where the identification challenges
are particularly severe due to the reflection problem
and the high-dimensional nature of the social network.

The structural equation relates individual student
achievement to the achievement of peers in the same
classroom or school, controlling for individual
characteristics and school-level factors. The
endogeneity concern arises from the simultaneous
determination of peer outcomes and the potential
for unobserved factors to affect entire peer groups.
The instrumental variables approach exploits random
variation in peer composition due to administrative
assignment rules and demographic shocks.

The dataset includes test score data, demographic
information, and school characteristics for
approximately 100,000 students across 500 schools
over a 10-year period [30]. The dimensionality
challenge arises from the need to model complex peer
interaction patterns while controlling for numerous
individual and school-level confounding factors.

Our regularized approach successfully identifies
significant peer effects while controlling for the
high-dimensional confounding structure. The
estimated peer effects are positive and economically
meaningful, with a one standard deviation increase
in peer achievement associated with a 0.15 standard
deviation increase in individual achievement. These
effects are robust to alternative specifications and
provide strong evidence for the importance of peer
interactions in educational production.

9 Conclusion
This paper has developed a comprehensive framework
for robust instrumental variables inference in
high-dimensional settings that addresses the
fundamental challenges posed by weak instruments,
many instruments, and complex confounding
structures. Our theoretical contributions establish the
consistency and asymptotic normality of regularized
instrumental variables estimators under general
conditions, while our methodological innovations
provide practical tools for implementation in modern
big data environments.

The theoretical framework presented extends classical

instrumental variables theory to accommodate
the complexities of high-dimensional inference
while maintaining rigorous statistical foundations.
Our establishment of finite-sample concentration
inequalities and asymptotic normality results under
minimal distributional assumptions represents a
significant advance in the theoretical understanding
of instrumental variables estimation in complex
settings. The derivation of optimal convergence rates
demonstrates that our estimators achieve minimax
efficiency despite the additional challenges introduced
by regularization and high-dimensionality.

The regularization techniques developed in this
paper address the longstanding problems of many
instruments and weak identification that have limited
the practical applicability of instrumental variables
methods [31]. Our adaptive penalty structures
automatically adjust to the strength of available
instruments and the dimensionality of the problem,
providing a data-driven approach that does not require
strong prior assumptions about sparsity patterns or
instrument strength. The integration of elastic net
regularization with instrumental variables estimation
represents a novel contribution that combines the
benefits of variable selection with the identification
power of instrumental variables.

The computational methods presented enable the
practical implementation of our theoretical framework
in large-scale applications. Our optimization
algorithms demonstrate superior scalability
compared to existing approaches while maintaining
numerical stability and convergence guarantees.
The development of specialized cross-validation
procedures for regularization parameter selection
addresses a critical gap in the literature and provides
practitioners with reliable tools for tuning regularized
instrumental variables estimators.

The extensive simulation studies demonstrate
substantial improvements in performance compared
to existing methods across a wide range of scenarios.
The bias reductions of 40% to 60% in strong
instrument settings and the maintenance of
reasonable performance under weak instrument
conditions represent significant practical advances.
The confidence interval coverage improvements
and reduced interval lengths provide researchers
with more reliable inference tools for empirical
applications.

The empirical applications illustrate the broad
applicability of our methodology across diverse
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research domains. The education returns
application demonstrates the ability to handle
traditional econometric problems with improved
precision and reliability [32]. The monetary policy
application showcases the utility of our approach
in macroeconomic settings with complex temporal
dependencies. The international trade application
illustrates the handling of industry-level data with
multiple sources of variation. The peer effects
application demonstrates the treatment of social
interaction models with network dependencies.

The extensions developed address several important
generalizations that expand the scope of our
methodology. The multi-dimensional extension
enables the treatment of multiple endogenous
variables while maintaining computational efficiency.
The nonlinear extension provides flexibility for
capturing complex relationships that may not be
adequately represented by linear models. The time
series extension addresses temporal dependencies
that are crucial for macroeconomic applications. The
panel data extension combines cross-sectional and
temporal variation while controlling for unobserved
heterogeneity.

Ourmethodology contributes to the growing literature
on machine learning applications in econometrics by
providing a principled approach that maintains the
identification assumptions central to causal inference
while exploiting the power of modern statistical
learning techniques. The integration of regularization
with instrumental variables estimation represents a
natural evolution that addresses the limitations of both
traditional econometric methods and pure machine
learning approaches when applied to causal inference
problems. [33]

The practical impact of our contributions extends
beyond methodological innovation to provide
researchers with concrete tools for addressing
endogeneity concerns in high-dimensional settings.
The software implementation of our methods
enables widespread adoption and application to
diverse research problems. The comprehensive
documentation and examples facilitate the integration
of our approach into existing empirical workflows.

Future research directions building on this foundation
include the development of methods for handling
nonlinear and interactive effects, the extension to
time-varying parameter models, and the integration
with recent advances in causal machine learning.
The treatment of model selection uncertainty and

the development of robust inference methods under
model misspecification represent important areas for
continued investigation.

The framework developed in this paper also opens
possibilities for addressing other challenging
problems in causal inference, such as the estimation of
heterogeneous treatment effects in high-dimensional
settings and the development of robust methods
for policy evaluation under complex confounding
structures. The integration of our instrumental
variables approach with recent advances in double
machine learning and orthogonal estimation
represents a promising direction for future research.

In conclusion, this paper provides a comprehensive
solution to the challenges of instrumental variables
estimation in modern high-dimensional environments.
The theoretical foundations are rigorous and
general, the computational methods are efficient and
scalable, and the empirical performance demonstrates
substantial improvements over existing approaches.
The methodology developed here represents a
significant advance in the toolkit available to
researchers for addressing endogeneity concerns
in complex data environments and opens new
possibilities for reliable causal inference in the era of
big data. [34]
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