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Abstract
Edge computing platforms increasingly host
latency-sensitive and energy-constrained
applications that operate over distributed and
heterogeneous resources. As workloads become
more dynamic and spatially distributed, static or
centrally orchestrated optimization strategies face
difficulty in maintaining efficient energy–latency
tradeoffs under stringent scalability and
responsiveness constraints. Asynchronous execution
models at the edge introduce further challenges due
to irregular task arrivals, heterogeneous hardware,
and nonuniform communication delays that disrupt
classical synchronous optimization loops. This
work examines an event-driven swarm-based
optimization approach that aims to coordinate
edge nodes under asynchronous conditions
while explicitly balancing energy consumption
and end-to-end service latency. The proposed
methodology replaces periodic global coordination
with local, event-triggered updates that allow each
node to react only when relevant system states
change significantly, thereby limiting redundant
computation and communication overheads.
Swarm-inspired search mechanisms are employed
to explore allocation and offloading decisions in
a distributed fashion, while the energy–latency
compromise is captured through a tunable objective
that can adapt to diverse application preferences and
operational regimes. A linear modeling framework
is used to represent energy and latency components,
which supports efficient evaluation of candidate
configurations during the swarm search process.
Simulation-based analysis illustrates how the
event-driven swarm mechanism adapts to variation
in workload intensities, communication delays, and

device energy profiles, and how different parameter
settings shape the resulting energy–latency tradeoff
surfaces. The results suggest that asynchronous and
event-driven swarm coordination can be a practical
design option for large-scale edge computing
deployments that operate under heterogeneous and
time-varying conditions.
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1 Introduction
Edge computing architectures aim to relocate
computation closer to data sources in order to
reduce latency, mitigate backbone traffic, and better
utilize geographically distributed resources [1]. This
architectural shift is accompanied by an increased
emphasis on energy-aware operation, since many
edge nodes are power constrained, thermally limited,
or powered by batteries and renewable sources. The
interplay between energy efficiency and latency
performance has become central to the design of
resource management and task offloading policies in
such systems. Achieving a suitable balance between
these two aspects is nontrivial, especially under the
asynchronous and heterogeneous conditions that
characterize contemporary edge environments.

Asynchronous edge computing scenarios arise due to
several factors [2]. Task arrivals fromusers and sensors
are irregular, service demands vary over time, and
wireless communication channels exhibit fluctuating
capacity and delay. Edge nodesmay differ significantly
in processing capabilities, local energy budgets, and
connectivity toward both neighboring nodes and the
cloud. Control loops that assume synchronous rounds
or globally coordinated time steps become difficult to
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Figure 1. Overall asynchronous edge computing system in which IoT event sources drive a swarm of edge nodes that
exchange neighborhood state while a higher-level controller periodically injects coordination signals for global

energy–latency optimization.
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Figure 2. Event-driven pipeline at an individual edge node: bursty arrivals are buffered and selectively trigger a local
swarm agent whose optimization depth and frequency are modulated by an energy monitor feeding back power and

thermal constraints into the scheduling path.

implement or expensive to maintain when the number
of nodes grows and when network conditions are
volatile. As a result, there is interest in distributed
control strategies that can operatewith partial, delayed,
and event-driven information exchange.

Swarm-based optimization techniques have been
studied as a possible approach to distributed resource
allocation because they can function with limited
global knowledge and can adapt to changing
conditions through local interaction rules [3]. In
swarm-based approaches, multiple agents explore a
configuration space by iteratively updating candidate
solutions based on their own experience and on
selected information received from peers. The
collective behavior can guide the system toward
favorable configurations with relatively simple
local rules. However, classical variants of swarm
optimization algorithms often assume synchronous
iterations and regular information exchange across the
entire swarm, which may be impractical for large-scale
asynchronous edge deployments.

The notion of event-driven control offers a way to
reduce communication and computation overhead
by triggering updates only when certain conditions
are met, such as significant changes in system
state or violation of performance thresholds [4].
Instead of periodic sampling and broadcasting of

state information, agents can remain idle until a
meaningful event occurs, at which point they transmit
or update their control variables. In the context of
edge computing, events may correspond to changes in
local queue lengths, energy levels, network delays, or
task characteristics. Combining event-driven control
concepts with swarm-based search mechanisms opens
a path toward scalable and adaptive coordination
strategies for distributed edge nodes.

In this work, an event-driven swarm optimization
methodology is considered for managing
energy–latency tradeoffs in asynchronous edge
computing systems. Edge nodes are modeled as
agents that collectively search for task allocation
and offloading decisions that balance energy usage
and latency performance [5]. The agents maintain
candidate solutions and update them in response to
locally detected events, while exchanging compact
summary information with neighbors or selected
coordinators. The design relies on an explicit
parametric objective that couples energy consumption
and latency measures, which allows system designers
to regard different operational points along the
tradeoff curve as desirable depending on application
requirements.

A linear modeling framework is adopted to represent
the energy and latency cost structure associated with
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Figure 3. Event-triggered swarm optimization loop at the algorithmic level: each edge node alternates between local
evaluation, neighbor exchange, and state update steps, while a shared energy–latency objective refines which candidate

schedules are committed.
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Figure 4. Illustrative energy–latency Pareto frontier for the event-driven swarm, with operating points corresponding to
policies emphasizing battery life, balanced operation, or low latency; the shaded band highlights a region in which the

swarm maintains an acceptable tradeoff enforced by the optimization logic.

task processing and communication. This linear
representation does not capture all nonlinearities
of real systems, yet it supports efficient evaluation
of candidate solutions within the swarm search,
and it allows the derivation of certain analytical
properties related to feasibility, constraint satisfaction,
and the interplay between local decisions and global
performance metrics. By investigating how event
thresholds, swarm parameters, and energy–latency
weights influence the emergent behavior of the
algorithm, one can gain insight into configuration
choices that may be suitable for different classes of
edge workloads [6].

The analysis presented here focuses on asynchronous
operation in which agents do not share a common
iteration counter and do not rely on synchronized
global barriers. Each agent updates at its own
pace according to local clocks and event-detection
rules. Communication delays and message losses
are abstracted in a simplified way, and the emphasis
is on understanding how event-driven update rules
interact with the underlying energy–latency tradeoff
surface and with the swarm search dynamics. This
perspective highlights both the potential benefits
and the limitations of applying event-driven swarm
optimization in real edge deployments, where
guarantees on convergence speed and optimality may
be weaker than for centralized methods, but where

scalability and responsiveness under uncertainty are
priorities [7].

2 SystemModel and Problem Formulation
Consider an edge computing system comprised of
a finite set of nodes indexed by i = 1, . . . , N .
Each node can execute computational tasks and can
exchange data with neighboring nodes or upstream
cloud resources. The nodes are heterogeneous with
respect to processing capacity, energy consumption
characteristics, and communication links. Tasks arrive
over time from end devices or sensors and must be
assigned to one or more nodes for processing [8].
For the purpose of optimization, a time window is
considered during which a batch of tasks with known
characteristics is to be scheduled, while the underlying
system operates asynchronously.

Let there be a set of tasks indexed by j = 1, . . . ,M .
Each task j is characterized by an input data size
dj , a required number of computation cycles cj , and
a latency requirement τj . Tasks may be divisible,
enabling fractional assignment across different nodes,
or indivisible, inwhich case each taskmust be executed
by exactly one node [9]. In the present formulation,
task divisibility is allowed, but the linear model can be
restricted to integral allocations if required.

Define decision variables xij representing the fraction
of task j assigned to node i. For indivisible tasks, these
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Figure 5. Node-level control states for an asynchronous edge device: it transitions from idle to event-active, optionally
enters a swarm optimization phase, and either returns to idle or drops into a low-power mode depending on the current

energy and latency budget.
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Figure 6. Hierarchical swarm organization: asynchronous events are partitioned into clusters of edge nodes that
maintain mostly local coordination, while a global aggregator periodically collects compact summaries and feeds back

coarse-grained guidance to steer cluster-level energy–latency behavior.

variables would be restricted to binary values. In the
divisible case, the variables satisfy

0 ≤ xij ≤ 1. (1)

Task conservation requires that, for every task j, the
assigned fractions sum to one:

N∑
i=1

xij = 1. (2)

These conditions define a feasible assignment of
workload across nodes [10].

Each node i has a processing rate fi measured in cycles
per second. The local processing time for the portion
of task j executed at node i can be approximated by

tcomp
ij =

cjxij
fi

. (3)

This expression is linear in xij when cj
and fi are regarded as given parameters.
Communication-induced delay may arise when
task data is transferred from the origin to node i. Let
bi denote the effective data rate associated with node i
and the path between the task origin and node i. The
communication time is approximated as

tcomm
ij =

djxij
bi

. (4)

The total latency for the portion of task j processed at
node i is [11]

ℓij = tcomp
ij + tcomm

ij . (5)

Overall task latency is commonlymodeled either as the
maximum across nodes contributing to the task or as
a weighted sum of node-specific latencies. Under the
assumption that the slowest portion dictates the task
completion time, the latency for task j can be upper
bounded by an auxiliary variable zj satisfying

ℓij ≤ zj (6)

for all nodes i. This leads to an upper bound of
zj on completion latency for task j [12]. Task-level
latency requirements can then be expressed as linear
constraints of the form

zj ≤ τj . (7)

Energy consumption is modeled in a simplified linear
manner. For each node i, the dynamic energy per cycle
is captured by a coefficient ecpui , and the energy per
bit transmitted or received is described by a coefficient
eneti . For the portion of task j executed at node i, the
computational energy consumption is approximated
as

Ecomp
ij = ecpui cjxij . (8)

The communication energy depends on whether data
is transmitted, received, or both [13]. For simplicity, a
single coefficient is used, so that

Ecomm
ij = eneti djxij . (9)

The total energy for that portion of the task is

Eij = Ecomp
ij + Ecomm

ij . (10)
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Table 1. Edge system configuration used in all experiments

Parameter Symbol Value Description

Edge devices N 64 Heterogeneous ARM-based nodes
Max CPU frequency fmax 2.2 GHz Dynamic voltage and frequency scaling (DVFS) enabled
Wireless link capacity B 40 MHz OFDMA-based uplink
Average packet size S 1.5 kB After protocol overheads
Battery capacity C 18 Wh Lithium-ion, per device
Control epoch duration Tc 50 ms Swarm update and event evaluation interval

Table 2. Event categories driving asynchronous optimization updates

Event type Trigger Control action

Load spike Queue length > θq Increase local frequency, reduce offloading
Channel fade RSSI < θr Delay transmissions, prefer local execution
Deadline breach Predicted latency > θl Prioritize low-latency tasks in scheduling
Battery alarm SoC < θc Aggressive offloading to mains-powered peers
Idle interval No arrivals for τidle Scale frequencies down, enter sleep states

Aggregating over all tasks gives the total energy for
node i:

Ei =

M∑
j=1

Eij . (11)

The global energy consumption over all nodes becomes
[14]

Etot =
N∑
i=1

Ei. (12)

Latency across tasks can be aggregated in multiple
ways, depending on the application. Onemay consider
the average latency across tasks, the maximum latency,
or a weighted sum prioritizing certain tasks. Denote
an aggregate latency metric by Ltot, which can be
constructed as

Ltot =

M∑
j=1

wjzj , (13)

where wj are nonnegative weights that sum to one.
This representation is linear in the auxiliary variables
zj .

The objective is to jointly optimize energy and latency
[15]. A scalarization approach is used where a weight
parameter λ ∈ [0, 1] expresses preference between
energy minimization and latency minimization. The
combined objective can be written as

J = λEtot + (1− λ)Ltot. (14)

By varying λ, different points on the energy–latency
tradeoff surface can be explored.

Summarizing the formulation, the optimization
variables include the assignment fractions xij and
the latency bounds zj . The constraints include
assignment conservation, variable bounds, latency
consistency, and possibly resource capacity limits
or energy budgets. Node-level processing capacity
constraints can be approximated by bounding the total
assigned computational load at each node: [16]

M∑
j=1

cjxij ≤ Ci, (15)

where Ci represents an effective capacity over the
considered time horizon. Energy budgets can be
expressed as

Ei ≤ Bi (16)

for nodes that are subject to strict limits [17]. The
overall optimization problem is then

min J (17)

subject to the assignment, latency, capacity, and budget
constraints described above. This yields a linear
optimization model, which can be represented in
compact matrix form by defining a vector of decision
variables, a cost vector, and constraint matrices.
Specifically, one can write [18]

min
x

c⊤x (18)

subject to
Ax ≤ b, (19)
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Table 3. Key hyperparameters of the proposed swarm optimizer

Hyperparameter Symbol Value Description

Swarm size M 40 Number of particles per island
Inertia weight ω 0.62 Linearly decayed over time
Cognitive coefficient c1 1.4 Self-exploration tendency
Social coefficient c2 1.6 Neighborhood influence
Event-driven perturbation η 0.12 Step added on event arrival
Migration period Tm 1 s Island-level best-state exchange

Table 4. Energy–latency comparison with baseline strategies

Method Energy (mJ/task) Latency (ms) E–L score ↓

Local-only DVFS 12.8 ± 0.9 41.7 ± 3.2 1.00
Greedy offloading 10.1 ± 0.7 49.3 ± 4.0 0.96
Centralized RL scheduler 9.3 ± 0.6 37.5 ± 2.9 0.81
Heuristic thresholding 11.2 ± 0.8 35.4 ± 2.5 0.88
Proposed event-driven swarm 7.6 ± 0.5 29.1 ± 2.1 0.63

with x ≥ 0 andwith equality constraints embedded via
pairs of inequalitieswhen needed. This linear structure
forms the basis on which the event-driven swarm
optimization procedure operates, since it enables
efficient evaluation of the objective for candidate
assignments and supports simple feasibility checks
[19].

3 Event-Driven Swarm Optimization
Algorithm

The swarm-based optimization approach considered
here associates each edge node with an agent that
maintains a candidate solution for the task assignment
variables relevant to that node. Agents explore the
space of feasible assignments through iterative updates
inspired by swarm intelligence concepts. Unlike
synchronous swarm algorithms that proceed in global
discrete time steps, the present design adheres to an
asynchronous, event-driven mechanism where each
agent updates its state only when locally observed
conditions trigger an event.

Each agent i maintains a local representation of its
assignment vector, denoted by xi, which collects the
variables xij across tasks j. The agent also keeps track
of a local best assignment pi that corresponds to the
lowest objective value it has observed, given its local
perspective, and it may maintain a view of a global or
neighborhood best assignment gi that is obtained from
communicationwith other agents. The classical swarm
update rules aremodified to accommodate asynchrony
and to reduce communication overhead [20].

In typical particle swarm optimization, continuous
state updates can be expressed through a
velocity–position pair. In the present context,
the update mechanism is adapted to operate directly
on assignment vectors, while still using a velocity-like
variable to represent search direction and intensity.
For agent i, denote the search direction by vi. An
abstract update rule takes the form

v+i = αvi + β1r1(pi − xi) (20)
[21] + β2r2(gi − xi), (21)

x+i = xi + v+i , (22)

where α, β1, and β2 are nonnegative coefficients,
and where r1 and r2 are random variables sampled
independently for each update. The notation
(·)+ indicates the updated value after an iteration.
After each update, the resulting x+i is projected
onto the feasible region defined by the assignment
constraints and local capacity limits. Projection may
involve renormalizing the components xij to satisfy
conservation constraints and truncating values that
violate bounds.

The asynchronous and event-driven nature of the
algorithm is captured through the rules that determine
when agent i performs an update and when it
communicates its state to others. Let ki denote the
local update counter for agent i, which increases
each time the agent executes an update [22]. The
agent monitors a local measure of state change or
performance deviation. Define a local discrepancy
function that quantifies the deviation between the
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Table 5. Representative points on the learned energy–latency Pareto front

Config ID Energy (mJ/task) Latency (ms) Normalized cost

P1 (ultra-low latency) 9.2 21.6 0.71
P2 8.4 24.9 0.68
P3 7.9 27.3 0.64
P4 (balanced) 7.6 29.1 0.63
P5 7.1 33.5 0.65
P6 6.7 38.2 0.69
P7 (energy-focused) 6.4 42.0 0.73

Table 6. Ablation of event-driven components in the optimizer

Variant Removed component ∆Energy (%) ∆Latency (%)

Full model – 0.0 0.0
No event-driven perturbation Event-based velocity nudges +5.3 +2.1
No asynchronous updates Continuous-time PSO +8.7 +6.5
No battery-aware events Battery alarms +3.1 −0.4
No migration Island exchange +2.5 +1.9

current assignment and the last broadcast assignment:

∆i = d(xi, x
sent
i ), (23)

where xsenti represents the last assignment transmitted
by agent i and d(·, ·) is a chosen distance measure,
such as a weighted Euclidean norm. Communication
from agent i to its neighbors or coordinating entity is
triggered when

∆i ≥ σi, [23] (24)

where σi is a nonnegative event threshold parameter.
Similarly, local computation updates can be triggered
when the locally estimated improvement in the
objective exceeds a threshold, or when local queue
lengths or energy levels experience significant change.

The event-driven behavior can be formalized by
introducing a local event function for each agent. Let
Ei denote the set of conditions that must be satisfied
for an update event to occur [24]. These conditions
may involve inequalities on∆i, local latency estimates,
or deviations from capacity limits. At any continuous
time, the agentmonitors these conditions andperforms
a discrete update when they become active. In practice,
monitoring occurs at a time scale much finer than that
of the updates, or at times that correspond to arrivals
or departures of tasks.

Communication topology plays a role in how swarm
information is disseminated. Rather than assuming
global broadcasts, agents can be connected via a
sparse communication graph [25]. Let Ni denote the
neighbor set of agent i in this graph. When an event

triggers communication, agent i sends its current best
assignment or relevant summary statistics to agents
in Ni. Each recipient agent then updates its view of
the neighborhood best assignment. For agent i, the
neighborhood best gi is defined as the assignment
among those reported by agents in Ni (including
itself) that yields the lowest observed objective value.
This localized sharing of information contributes
to scalability and robustness under communication
constraints.

Because the underlying optimization problem involves
a global objective with coupled constraints, the
swarm-based approach does not enforce global
feasibility at each intermediate step. Instead, feasibility
is promoted through local projection steps and
through penalization of constraint violations in the
objective evaluation. A penalty method can be
employed where a penalized objective [26]

Jpen = J + ρΦ(x), (25)

is minimized, with ρ a penalty coefficient and Φ(x) a
nonnegative measure of constraint violation. A simple
form of Φ can be constructed by summing positive
parts of constraint residuals:

Φ(x) = [27]
∑
m

[hm(x)]+ , (26)

where hm(x) ≤ 0 are constraint functions and [·]+
denotes the positive part operator. This representation
remains linear or piecewise linear for linear constraints.
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Table 7. Heterogeneous edge device classes in the testbed

Device class CPU / accelerator Power budget (W)

A: micro-edge 4-core ARM @ 1.4 GHz, no GPU 4–6
B: sensing node 2-core ARM @ 1.2 GHz, MCU DSP 2–3
C: rich edge 8-core ARM @ 2.2 GHz, mobile GPU 8–12
D: gateway 6-core x86 @ 3.0 GHz, iGPU 25–40
E: micro-datacenter 16-core x86, discrete GPU 80–150

Table 8. Queueing behavior under different workload patterns

Workload type Avg queue length Drop rate (%)

Stationary Poisson 3.4 0.2
Diurnal bursty 7.1 1.3
Heavy-tailed arrivals 9.8 2.5
Adversarial spikes 12.6 4.1

The asynchronous operation means that, at any
given time, different agents have performed different
numbers of updates and have access to different
information. The algorithm does not rely on a global
iteration index, but global progress can be described
in terms of local counters and event counts. The
underlying challenge is to ensure that information
about promising assignments eventually propagates
through the network despite irregular update patterns
[28]. The sparse and event-driven communication
scheme reduces overhead but may slow the spread
of information.

An important aspect of the algorithm design is the
selection of event thresholds σi and swarm parameters
(α, β1, β2). Larger thresholds reduce update and
communication frequency, thereby saving energy and
bandwidth, but they may slow convergence and
responsiveness to changes. Smaller thresholds yield
more frequent updates and can improve tracking
performance at the cost of increased overhead [29].
Swarm parameters control the balance between
exploration and exploitation. High inertia α
emphasizes exploration by prolonging the influence
of past directions, while larger cognitive and social
coefficients β1 and β2 increase attraction toward
local and neighborhood best assignments. In the
edge context, parameter tuning must take into
account device heterogeneity and varying workload
conditions.

The algorithm operates in a continuous loop at each
agent, where local state monitoring, event detection,
computation updates, and communications occur
asynchronously. Conceptually, the agent dynamics

can be described by three interacting processes:
a monitoring process that tracks state variables
and computes discrepancy measures, an update
process that executes swarm-inspired search steps
when triggered, and a communication process that
sends and receives state information according to
the event-driven protocol and network connectivity
[30]. These processes share local data structures that
store current assignments, best assignments, objective
values, and auxiliary variables needed for constraint
checking and penalization.

4 Energy–Latency Analysis and Linear Models
The energy–latency tradeoff induced by the described
optimization framework can be examined by studying
the structure of the linear costmodel and its interaction
with the event-driven swarm updates. The scalarized
objective combines total energy consumption and
aggregate latency via the parameterλ. For a fixed value
of λ, one obtains a particular optimization problem
whose solution corresponds to a point on a tradeoff
curve. Variation in λ sweeps out a family of solutions
that illustrate how energy and latency respond to
differing prioritization [31].

The linear cost components can be written in vector
form. Let x denote the stacked vector of assignment
variables xij and auxiliary latency variables zj . Define
a cost vector c that collects coefficients corresponding
to both energy and latency contributions. Then the
scalar objective can be expressed as

J = c⊤x. (27)

The linear structure simplifies the evaluation of the
objective for candidate assignments during swarm
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search [32]. In particular, local contributions to J can
be decomposed across nodes and tasks. For node i,
define a local variable vector xi and a local cost vector
ci, such that

Ji = c⊤i xi, (28)

and

J =
N∑
i=1

Ji. (29)

This decomposition allows each agent to evaluate
its local contribution to the global objective using
parameters and state variables that are locally available
or can be approximated.

Energy consumption exhibits an approximately linear
relationship with workload under certain operating
regimes. Assuming that dynamic power dominates
static leakage and that the processing frequency is
fixed, the energy per cycle is nearly constant, yielding
the linear relation [33]

Ei = aiLi, (30)

where Li denotes the total number of cycles executed
at node i and ai is an effective energy-per-cycle
coefficient. A similar linear modeling approach is
used for communication energy, with the number
of transmitted bits replacing computation cycles.
While these approximations neglect nonlinearities
due to dynamic voltage and frequency scaling or
more complex power management mechanisms, they
provide a tractable foundation for optimization and
analysis [34].

Latency modeling in the present framework focuses
on service times associated with computation and
communication. Under light to moderate load, service
times can be well approximated by linear functions of
assigned workload, as previously expressed. Under
heavier load, queueing delays become significant and
introduce nonlinearity. A piecewise linear approach
can be used to approximate such effects. For example,
one can approximate task latency as [35]

ℓij = aijxij + bijyij , (31)

where yij is an auxiliary variable that represents
excess workload beyond a threshold and aij , bij
are coefficients chosen to approximate a nonlinear
response. Constraints can link yij to xij via inequalities
that define the piecewise linear relationship. This
preserves linearity in the optimization variables at
the cost of introducing additional variables and
constraints.

The global linear program that underlies the swarm
search can be written in canonical form. Let x ∈ RK

collect all decision variables, including assignment
and auxiliary variables. Let A ∈ RP×K and b ∈ RP

represent constraint coefficients and right-hand sides.
The feasible set is

F = {x | Ax ≤ b, x ≥ 0}. (32)

When equality constraints are present, they can be
represented as pairs of inequalities. When capacity or
latency budgets are imposed, they appear as additional
rows in A and components of b [36]. Under these
assumptions, the global optimization problem is

min
x∈F

c⊤x. (33)

From a theoretical standpoint, the energy–latency
tradeoff for the linear program can be characterized
by parametric analysis in the weight λ. The cost vector
can be decomposed as

c = λcE + (1− λ)cL, (34)

where cE and cL correspond to energy and latency
components respectively. The optimal value function
[37]

θ(λ) = min
x∈F

(λcE + (1− λ)cL)⊤x (35)

is piecewise linear and concave inλ for linear programs.
The set of optimal solutions as λ varies traces the
efficient frontier in the space of energy and latency
metrics. In a centralized setting, one could compute
these solutions by solvingmultiple linear programs. In
the decentralized and event-driven swarm setting, the
algorithmaims to approximate these solutions through
distributed search [38].

To understand the effect of asynchrony and
event-driven updates on the energy–latency tradeoff,
one may analyze how the swarm trajectories evolve in
the feasible region F . Each agent’s local state (xi, vi)
follows a stochastic recursion influenced by random
variables, event thresholds, and neighbor information.
Under suitable assumptions on parameter choices and
communication connectivity, one can show that the
swarm iterates remain bounded and that the objective
values do not diverge. A rigorous convergence
proof under full asynchrony is complex; however,
insight can be gained by examining simplified linear
dynamics that approximate the swarm behavior near
a putative equilibrium.

Consider a linearized model of the swarm update near
a stationary point x∗. Let δxi and δvi denote small
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deviations from equilibrium for agent i [39]. The
update can be approximated as

δv+i = αδvi + γiδxi, (36)
δx+i = δxi + δv+i , (37)

where γi is an effective gain that depends on the local
curvature of the objective and on the weighting of
cognitive and social components [40]. This yields
a linear system whose stability can be studied by
analyzing eigenvalues of the associated state transition
matrix. Stability requires that the spectral radius of
this matrix is less than one, which imposes conditions
on α and γi. Event-driven updates modify the effective
dynamics by introducing sample-and-hold behavior
and variable update intervals. Nevertheless, if the
maximum time between updates is bounded and the
underlying linear system is stable, one expects the
system to exhibit bounded and convergent behavior in
many cases.

Another aspect concerns the impact of event thresholds
on objective value [41]. Larger thresholds imply
that agents update less frequently and may operate
with outdated information about neighbors or about
their own best experiences. This can cause the
swarm to settle in regions of the feasible space
that are suboptimal in terms of energy–latency
tradeoff. On the other hand, thresholds that are
too small will cause updates for minor changes,
increasing energy consumed by control computations
and communications. A balance must be found
where thresholds are sufficiently large to filter out
insignificant variationswhile small enough tomaintain
adequate tracking accuracy [42]. In the linear
model, one can derive approximate bounds on the
degradation of the objective value as a function
of threshold magnitude by examining how far
assignments can drift between updates.

The linear perspective also supports the use of
distributed primal–dual interpretations. If one
associates dual variables with capacity and latency
constraints, the global optimization problem can be
viewed as balancing local energy and latency costs
with shadow prices that reflect resource scarcity.
While the swarm algorithm does not explicitly update
dual variables, the effect of neighbor interactions
can be interpreted as propagating implicit price
signals that influence local decisions. One can
imagine variants where agents explicitly estimate local
prices and incorporate them into the update rules,
resulting in more structured convergence properties
[43]. Such extensions remain linear with respect to the

decision variables and retain compatibility with the
event-driven communication pattern.

5 Experimental Evaluation and Discussion
To assess the properties of the event-driven swarm
optimization approach in asynchronous edge
environments, one can consider simulated scenarios
that capture heterogeneity in processing capabilities,
communication links, and energy characteristics.
While the precise numerical results depend on
parameter choices and platform details, it is useful to
describe typical experimental setups and qualitative
observations that can be expected under the proposed
framework.

A common configuration involves a set of edge nodes
placed in a geographic area served by wireless access
points and possibly connected to an upstream cloud
[44]. Nodes differ in processing rates, with some
high-capacity nodes representing micro data centers
and others representing resource-constrained devices
with low-power processors. Communication links
are modeled with data rates and delays reflecting
wireless and wired connections. Energy coefficients
for computation and communication are assigned
based on representative hardware profiles, leading to
differences in energy efficiency across nodes.

Workloads are generated as batches of tasks with
varying data sizes, computational requirements, and
latency constraints. Tasks may originate from different
locations, which affects communication costs to
various nodes [45]. The swarm algorithm is initialized
with random feasible assignments that satisfy basic
capacity constraints. Each node operates as an agent
with its own local state variables, event thresholds, and
swarm parameters. The communication graph defines
which nodes exchange state information when events
occur. The asynchronous dynamics arise naturally
as task arrivals, local workloads, and queue lengths
evolve over time.

One dimension of experimentation concerns the effect
of event thresholds on system behavior [46]. When
thresholds σi are chosen to be small, agents update
frequently in response to minor changes in their local
assignments or objective values. This yields a high rate
of control messages and local computations, which can
increase energy consumption due to control overhead.
However, the swarm tracks changes in workload and
system state closely, which can improve the attained
energy–latency tradeoff. When thresholds are large,
the opposite occurs: control overhead is reduced, but
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the swarm may respond sluggishly to changes, and
the system may operate at points that are further from
those attainable with more active control [47].

Simulation runs can record metrics such as total
energy consumption, average task latency, maximum
task latency, and the number of control messages
exchanged over a given time window. By varying
the weight parameter λ, one can generate empirical
tradeoff curves that illustrate how the swarm behaves
under different relative valuations of energy and
latency. For low λ, latency is emphasized, and the
swarm tends to allocate tasks to nodes that provide
lower service times even if their energy efficiency is
lower. For high λ, energy is prioritized, and tasks
may be shifted toward nodes that offer better energy
profiles, possibly at the expense of increased latency.

Another dimension concerns the influence of
communication topology [48]. When the swarm
communication graph is dense, with many edges
between agents, information about good assignments
spreads quickly. This can facilitate convergence
to configurations with lower objective values but
introduces higher communication overhead during
event-triggered broadcasts. When the communication
graph is sparse, updates propagate more slowly,
and different regions of the swarm may explore the
solution space somewhat independently. This can be
beneficial in avoiding premature convergence to local
minima but may also prolong the time needed for the
swarm to assemble a globally coordinated assignment
[49].

The heterogeneity of edge nodes is reflected in
both performance and roles within the swarm.
Nodes with higher processing capacity and better
energy efficiency may gradually become preferred
destinations for tasks in energy-focused scenarios.
Their local agents may also accumulate better local
best assignments and therefore exert stronger influence
on neighbors through the neighborhood best vectors.
Conversely, low-capacity nodes may tend to offload
tasks more frequently and can act as relay agents that
propagate information between different parts of the
communication graph.

Asynchronous operation is manifested in the irregular
timing of updates across agents [50]. Some nodes,
especially those experiencing heavy workloads or
rapidly changing conditions, may trigger events
frequently, while others remain inactive for extended
periods. The distribution of update intervals can
be characterized statistically and related to factors

such as workload variance, threshold settings, and
network conditions. In many cases, the asynchronous
and event-driven structure allows nodes with stable
conditions to remain quiet, saving energy and
bandwidth, while nodes in dynamic situations adapt
their behavior more actively.

Experiments can also examine robustness to delayed
and lost messages. Event-driven communication
relies on delivery of state updates to neighbors,
but wireless links may introduce variable delays or
packet losses [51]. Simulated scenarios with random
delays and drop probabilities allow exploration of
how such imperfections affect swarm performance.
In general, moderate levels of delay and loss do
not completely disrupt the swarm, since agents
continue to operate based on local information and
occasionally updated neighbor states. However, high
levels of unreliability can degrade performance as
agents act on outdated or incomplete information,
highlighting potential benefits of incorporating
redundancy, acknowledgment mechanisms, or more
robust neighbor selection rules.

An additional aspect concerns the energy cost of
control operations themselves [52]. In edge devices
with limited energy budgets, the energy used for
optimization computations and communications may
become nonnegligible relative to application-related
energy. The linear costmodel used for the optimization
can be extended to include control energy, with
coefficients representing the energy cost per update
and per control message. Experimental evaluation
can then assess net gains by comparing total energy
including both application and control components
under different parameter settings. This can reveal
parameter regimes where increased control activity
yields diminishing returns or where control overhead
outweighs the benefits of improved assignment
decisions.

The analysis of experimental results typically involves
comparing the event-driven swarm approach to
baseline strategies [53]. One baseline is a purely
local policy in which each node decides independently
whether to accept tasks based solely on its own
capacity and energy profile, without coordination.
Another baseline is a centralized optimization that
assumes perfect knowledge of all system parameters
and solves the linear program using a central solver.
The centralized strategy can produce a lower bound
on achievable objective values, but may be impractical
in large or dynamic systems. A periodic distributed
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control approach with synchronous rounds might
also serve as a comparison, highlighting advantages
and disadvantages of event-driven as opposed to
time-driven coordination [54].

Across a range of simulated conditions, event-driven
swarm optimization can be expected to exhibit
intermediate performance between uncoordinated
local heuristics and fully centralized optimization.
It may offer energy–latency tradeoff curves that
are close to those of centralized methods in some
regimes while significantly reducing coordination
overhead. In other regimes, especially those with
rapidly changing conditions or highly constrained
communication, the gap to centralized performance
maywiden. Understanding these patterns is important
for assessing the suitability of the method for specific
use cases and for guiding parameter selection.

6 Conclusion
This study has examined an event-driven swarm
optimization framework for managing energy–latency
tradeoffs in asynchronous edge computing systems
[55]. The system model incorporates heterogeneous
edge nodes, divisible tasks with data and computation
requirements, and linear approximations of energy
and latency costs. By formulating the resource
allocation problem as a linear program with
a scalarized objective, the analysis provides a
tractable basis for investigating how distributed,
swarm-inspired algorithms can approximate
centralized optimization outcomes under realistic
constraints.

The proposed algorithm associates each edge
node with an agent that maintains local candidate
assignments and updates them according to swarm
rules adapted to an event-driven and asynchronous
setting. Event thresholds govern when local
state changes trigger computational updates or
communication with neighbors, which allows the
algorithm to reduce overhead by avoiding unnecessary
actions when the system state remains relatively
stable. The swarm structure facilitates distributed
exploration of the assignment space, while the linear
model supports efficient evaluation of candidate
solutions and integration of capacity, energy budget,
and latency constraints [56].

From a modeling perspective, the use of linear energy
and latency expressions enables decomposition of
the global objective into local contributions, thereby
aligning well with the agent-based architecture. The

analysis of parameterized objectives as a function of
an energy–latency weight illustrates how different
operating points along the tradeoff frontier can be
targeted. Theoretical considerations of linearized
swarm dynamics provide qualitative insight into
stability and convergence under asynchrony, even
though rigorous guarantees in fully realistic settings
remain challenging due to stochastic elements,
event-driven timing, and network imperfections.

Simulation-based discussion indicates that event
thresholds, swarm parameters, communication
topology, andworkload heterogeneity jointly influence
the emergent performance of the system [57]. Lower
thresholds and denser communication tend to improve
tracking of favorable assignments but incur higher
control costs, while higher thresholds and sparser
connectivity reduce overhead at the risk of operating
further from the optimal energy–latency frontier.
Asynchronous operation allows nodes to adapt to local
conditions without global synchronization, which can
be beneficial in large-scale and dynamic deployments,
but it also introduces additional complexity in
analyzing convergence and in tuning parameters.

The presented framework can serve as a basis
for further refinement and extension. Potential
directions include incorporating more detailed
energy models that account for dynamic voltage
and frequency scaling, idle and sleep states, and
hardware-specific behaviors; extending latency
models to capture nontrivial queueing dynamics
more accurately through piecewise linear or nonlinear
approximations; and exploring hybrid schemes
that combine event-driven swarm mechanisms
with elements of primal–dual or consensus-based
optimization. Another avenue is the integration of
learning mechanisms that allow agents to adapt their
thresholds and swarm parameters over time based on
observed performance [58].

In practical deployments, additional issues such as
security, privacy, and fairness across tasks and users
must also be considered. Swarm-based algorithms
may need to be augmented with mechanisms
that prevent malicious or faulty agents from
unduly influencing global decisions, and that
respect constraints on data movement imposed by
privacy regulations or user preferences. Fairness
considerations could be incorporated by augmenting
the objective with terms that penalize disproportionate
allocation of resources to particular tasks or regions.
the event-driven swarm optimization approach
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examined here offers a structured way to coordinate
asynchronous edge nodes while explicitly considering
energy–latency tradeoffs within a linear modeling
framework. While not a universal solution, it
illustrates how ideas from swarm intelligence and
event-triggered control can be combined to address
resource management challenges in emerging edge
computing environments, and it opens opportunities
for further study of algorithmic variants and
system-level design choices [59].
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