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Abstract
Commonsense knowledge systems face inherent
challenges in representing and reasoning over
ambiguous, context-dependent real-world
knowledge. This paper presents a formal framework
integrating description logics (DL) and the Web
Ontology Language (OWL) to enhance ontological
reasoning capabilities within such systems. We
introduce a layered architecture that combines
terminological axioms (T B≀§) and assertional data
(AB≀§) to model commonsense facts, enabling
precise semantic interpretations through ALCQ
constructors. By leveraging tableau algorithms for
consistency checking and subsumption inference,
the framework supports non-monotonic reasoning
through epistemic extensions of DL, thereby
addressing default assumptions and exceptions more
effectively. A case study demonstrates the system’s
ability to infer implicit knowledge from sparse
inputs, such as deducing ∃ hasPart.Handle ⊑ Cup
from Cup ⊑ ∃ madeOf.Ceramic. Quantitative
evaluations across benchmark datasets show a 22%
improvement in inference accuracy over rule-based
systems, with polynomial-time complexity bounds
for SHOIN (D) ontologies. The integration of
OWL 2 RL profiles ensures tractability, while
hybrid reasoning strategies balance expressivity and
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computational feasibility. Additionally, we discuss
how open-world semantics can be pragmatically
reconciled with real-world constraints through
defeasible axioms. Our empirical results highlight
gains in inference speed and reliability, confirming
that a robust amalgamation of formal description
logics with commonsense heuristics is an essential
approach for scalable AI reasoning in dynamic
environments.
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1 Introduction
Artificial intelligence systems increasingly require
nuanced commonsense reasoning capabilities to
interpret the complexities of real-world scenarios.
In everyday life, individuals use a combination of
explicit facts and implicit background knowledge
to draw conclusions about physical objects, social
interactions, and events. These processes often
involve context-dependent interpretations: the word
bank might refer to a financial institution or the
edge of a river, depending on other semantic cues.
Traditional knowledge representation paradigms,
primarily reliant on propositional logic or handcrafted
production rules, have proven insufficient in capturing
and applying such fluid understanding [1] [2] [3].

A significant challenge in commonsense reasoning is
the necessity for flexible inference mechanisms that
extend beyond rigid symbolic logic systems. Classical
logic-based artificial intelligence (AI) approaches
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struggle with the inherent ambiguity and contextual
variability present in human cognition. Propositional
and first-order logic models, for instance, rely
on explicitly defined axioms and inference rules,
which are often too brittle to accommodate the
subtle gradations of meaning encountered in natural
language. Consider the sentence, "John put the apple
on the table and left the room. After a while, the apple
was gone." A human reader immediately infers that
another person or an animal likely moved the apple,
yet a strictly rule-based AI system would require
exhaustive pre-programmed knowledge to draw such
a conclusion. This limitation underscores the need for
probabilistic reasoning and contextual awareness [4]
[5] [6], [7].

Neural network-based models, particularly those
leveraging recurrent architectures and attention
mechanisms, have demonstrated advancements
in natural language processing (NLP) tasks,
including commonsense inference. These models are
pre-trained on vast corpora of textual data and employ
mechanisms to capture long-range dependencies in
language. However, while these architectures exhibit
proficiency in pattern recognition and text generation,
they often lack an inherent grasp of causality and
real-world physics. A model might generate a
plausible-sounding sentence yet fail to recognize
that "A refrigerator is used to keep food warm" is a false
statement. Addressing this gap requires augmenting
statistical languagemodels with structured knowledge
sources such as ConceptNet, WordNet, and large-scale
commonsense reasoning benchmarks like ATOMIC
and CommonsenseQA [8] [9] [10].

Commonsense knowledge representation is a
multifaceted problem that extends beyond linguistic
reasoning to include physical and social cognition.
Humans possess an intuitive understanding of
object affordances, spatial relations, and cause-effect
dynamics, enabling them to navigate environments
with ease. For example, an individual understands
that a glass of water, when overturned, will spill, and
that a fragile object dropped from a height is likely to
break. Embedding such physical commonsense into
AI systems necessitates the integration of knowledge
graphs, simulation-based reasoning, and multimodal
learning paradigms. Research in neuro-symbolic AI
attempts to bridge the divide between deep learning
and symbolic reasoning by incorporating structured
knowledge into neural networks, enabling systems to
perform abductive and counterfactual reasoning.

One promising direction in commonsense reasoning
research involves leveraging large-scale pre-trained
models alongside explicit knowledge bases.
Knowledge graphs, such as ConceptNet, store
structured relational data linking concepts through
semantic edges (e.g., "A cat is a type of animal" or
"Fire is hot"). When combined with recurrent neural
networks and memory-augmented models, these
knowledge graphs can serve as external memory
modules, enhancing contextual inference. Another
approach employs self-supervised learning techniques,
where AI models learn commonsense relationships
through exposure to unlabeled data and human-like
reinforcement learning from feedback mechanisms.
The combination of symbolic and sub-symbolic
representations helps mitigate the brittleness of
traditional logic-based AI while maintaining the
interpretability of explicit reasoning [11] [12] [13].

The role of probabilistic reasoning in commonsense
AI is crucial for handling uncertainty and ambiguity.
Bayesian networks andMarkov logic networks provide
a mathematical framework for reasoning under
uncertainty, enablingAI systems to assign probabilistic
confidence scores to inferences. For instance, if a
system is uncertain whether the phrase "He ran towards
the bank" refers to a financial institution or a riverbank,
it can weigh contextual cues probabilistically to
determine the most likely interpretation. Probabilistic
graphical models also facilitate causal reasoning,
allowing AI to predict the effects of actions based on
prior knowledge and statistical dependencies.

In addition to probabilistic and symbolic approaches,
research in multimodal learning has shown promise
in enhancing commonsense understanding. Humans
acquire commonsense knowledge not just from textual
descriptions but also from visual, auditory, and
experiential inputs. By integrating vision-language
models with commonsense reasoning modules, AI
systems can develop a more holistic understanding
of the world. For example, a model trained on both
images and text can infer that an unbalanced stack of
plates is likely to topple, even if it has never explicitly
encountered that specific scenario in training data.

A central issue in commonsense reasoning research
is evaluation. Unlike traditional NLP tasks, where
accuracy can be measured against a fixed set
of labels, commonsense inference often involves
open-ended reasoning and subjective judgments.
Benchmark datasets such as the Winograd Schema
Challenge, SWAG, and SocialIQA attempt to quantify
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commonsense reasoning ability, but these tests only
capture a fraction of the rich, implicit knowledge
humans employ in everyday cognition. Future
research must explore more comprehensive evaluation
metrics, including real-world validation through
interactive AI agents and human-AI collaboration
scenarios.

The integration of commonsense reasoning into AI
has profound implications for numerous applications,
ranging from conversational agents to autonomous
systems. Virtual assistants like Siri and Alexa,
for instance, could greatly benefit from enhanced
commonsense capabilities, allowing them to engage
in more natural and context-aware dialogues.
Autonomous robots, which must navigate dynamic
environments, require physical commonsense to
avoid hazardous situations and make intelligent
decisions. In healthcare, AI-driven diagnostic systems
can leverage commonsense reasoning to interpret
patient symptoms in the context of lifestyle and
environmental factors [14] [15] [16], [17].

Despite these advancements, several challenges
remain. One major limitation of current AI systems is
the lack of true grounding in real-world experiences.
Unlike humans, who learn through direct interaction
with their environment, most AI models are trained
on static datasets and lack embodied cognition. Efforts
in robotics and reinforcement learning seek to address
this issue by enabling AI agents to learn through
physical interaction, akin to how children acquire
commonsense knowledge. Additionally, ethical
considerations must be addressed, as AI systems with
flawed commonsense reasoning can propagate biases
or generate misleading inferences, potentially leading
to harmful consequences [18] [19] [20].

The future of AI-driven commonsense reasoning likely
involves a hybrid approach that synthesizes neural,
symbolic, and probabilistic methods. By combining
deep learning’s pattern recognition capabilities with
structured reasoning frameworks, researchers aim
to create AI systems that can generalize across
diverse contexts while maintaining interpretability
and robustness. The advent of neuromorphic
computing, which mimics the architecture of the
human brain, offers another potential avenue for
advancing commonsense cognition in AI. As research
progresses, achieving human-like commonsense
reasoning remains a grand challenge, but continued
interdisciplinary collaboration between cognitive
science, linguistics, and artificial intelligence holds

promise for significant breakthroughs in this field [21]
[22] [23].

Description logics (DL) offer a more expressive yet
decidable fragment of first-order logic, providing a
rigorous framework for modeling concepts (C), roles
(R), and individuals (I). This family of logics
underlies the Web Ontology Language (OWL), which
furnishes a standardized and widely adopted syntax
and semantics for ontological engineering. OWL
ontologies thus enable AI systems to share and reuse
conceptual models across diverse applications, from
semantic web services to biomedical knowledge bases.
However, significant gaps remain when these systems
attempt to handle so-called commonsense knowledge.
Much of commonsense is default or defeasible: one
might assume that a bird can fly, but this assumption
fails for specific exceptions like penguins or ostriches
[24] [25] [26], [27].

Integrating such default knowledge into a formal
framework often poses significant theoretical
and practical challenges. Non-monotonic
reasoning—where new information may invalidate
previously drawn conclusions—cannot be fully
captured by standard DLs that assume monotonic
entailment. Researchers have introduced extensions
to DL with epistemic and autoepistemic operators,
as well as rule-based formalisms, to capture the
complexities of default reasoning. Such approaches
allow for statements like Bird ⇝ Flies to remain
valid unless contradicted by specific axioms like
Penguin ⊑ ¬Flies.

Moreover, commonsense knowledge often contains
probabilistic or approximate elements. Breaking glass
tends to produce sound, but the degree of certaintymay
depend on context, object thickness, or environmental
factors. This uncertainty suggests that a purely
deterministic logical language is ill-suited unless
augmented with constructs from probability theory
or Dempster–Shafer belief functions. In parallel, the
open-world assumption inherent to OWL complicates
the direct application of everyday commonsense,
which is more akin to a closed-world viewpoint.
Humans often assume that if something is not known
to be true, it is simply false, whereas an open-world
system remains agnostic [28] [29] [30].

Against this backdrop, this paper proposes a layered
architecture that tightly couples standard description
logics with defeasible and context-sensitive extensions.
The layering concept differentiates terminological
axioms in the T B≀§ from assertional data in the
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Commonsense
Reasoning Type

Example Scenario and AI Challenge

Physical Commonsense Understanding that an ice cube left at room temperature will
melt over time. AI systems must incorporate physics-based
reasoning to model real-world object interactions.

Social Commonsense Inferring that if someone says, “I have an early meeting
tomorrow,” they are likely implying they need to sleep soon.
AI must recognize indirect speech acts and social norms.

Causal Reasoning Predicting that if a glass falls off a table, it will likely break.
AI systems must understand cause-and-effect relationships
to make informed predictions.

Ambiguity Resolution Determining whether “The man went to the bank” refers to
a financial institution or a riverbank based on surrounding
context.

Table 1. Types of Commonsense Reasoning and Corresponding AI Challenges

AI Model Strengths and Limitations in Commonsense Reasoning
Recurrent Neural
Networks

Effective at sequence-based predictions but struggle with
long-term dependencies and reasoning beyond textual
training data.

ConceptNet-based
Systems

Provides structured commonsense knowledge but lacks
flexibility in handling novel scenarios.

Probabilistic Graphical
Models

Capable of uncertainty reasoning but require substantial
domain knowledge for effective modeling.

Neuro-Symbolic AI Combines deep learning and symbolic logic for improved
reasoning but computationally complex.

Table 2. Comparison of AI Models in Commonsense Reasoning

AB≀§. Terminological axioms specify the overarching
structure of the domain (e.g., Cup ⊑ Container),
while assertional axioms encode specific facts
about individuals (e.g., Cup(c1)). By introducing
non-monotonic operators alongside standard DL
constructors (

⊔
, ,¬, ∃, ∀), we provide a means to

represent default knowledge, exceptions, and context.

In pursuit of practical performance, this framework
combines well-established tableau-based inference
procedures with additional optimization techniques.
Blocking strategies and caching reduce the overhead
of expanded search trees, while approximate
methods—such as matrix or tensor factorization for
large AB≀§ data—yield tractable query answering at
scale. To underscore the value of this approach, we
present a case study where the system autonomously
infers object properties from sparse hints, such as
concluding that a typical Cup might have a handle.
Furthermore, empirical benchmarks demonstrate
meaningful improvements over purely rule-based or

distributional approaches.

This paper’s primary contributions are threefold.
First, we detail how to represent and integrate
commonsense assertions by translating them into
OWL axioms enriched with defeasible operators.
Second, we describe a hybrid reasoning strategy
that leverages tableau expansion, approximate
decomposition, and partial consistency checks to keep
reasoning within polynomial or quasi-polynomial
time bounds in certain restricted profiles (EL++,
RL). Third, we quantitatively evaluate this system
on multiple benchmarks, including the LUBM
dataset, CommonsenseQA, and a subset of YAGO2,
demonstrating consistent gains in both accuracy and
runtime performance [31] [32] [33].

The remainder of the paper is structured as follows.
After reviewing the foundations of description logics
and OWL semantics, we discuss the ontological
reasoning mechanisms that empower non-monotonic
and hybrid inference. We then introduce specific
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techniques for integrating commonsense knowledge,
focusing on the interplay of default axioms and
practical constraints. Adetailed case study outlines our
system’s implementation pipeline, culminating in an
evaluation of results, limitations, and potential future
avenues. We close with a discussion of how these
advances position OWL-based systems to address
ever more complex commonsense reasoning tasks in
real-world AI deployments.

2 Description Logics and OWL Semantics
Description logics formalize knowledge bases K =
(T ,A), separating the T B≀§ from theAB≀§. In the T B≀§,
we specify intensional knowledge about concepts and
roles through axioms of the form C ⊑ D. In the AB≀§,
we assert which concepts or roles hold for specific
individuals (e.g., C(a), R(a, b)). A model-theoretic
semantics, given by interpretations I = (∆I , ·I),
assigns to each concept a subset of the domain ∆I ,
ensuring that the axioms in T and A are satisfied.

For instance, a concept like ∃ hasChild.Doctor denotes
all individuals that have at least one child who
is a doctor. This allows for rich structure in
concept expressions, including conjunctions (C ⊓ D),
disjunctions (C ⊔ D), and negation (¬C). The level of
expressivity is parameterized by different DL families,
such as ALC, SHOIN , and SROIQ.

Description logics (DL) serve as the foundation for
knowledge representation in ontology-based systems,
particularly within the Semantic Web framework. The
Web Ontology Language (OWL), which is used for
defining structured ontologies, is built upon expressive
DL fragments. The primary advantage of DL over
simpler representation formalisms like propositional
logic is its ability to represent hierarchical relationships
between concepts while maintaining decidability in
inference tasks. The expressivity of a given DL is
determined by the constructors it permits; for example,
ALC (Attributive Language with Complements)
supports conjunctions, disjunctions, negation, and
existential quantification, whereas SHOIN and
SROIQ extend expressivity with transitive roles,
number restrictions, and role hierarchies [34] [35].

A critical property of DLs is their reliance on reasoning
services to derive implicit knowledge from explicitly
stated axioms. Standard inference problems include
concept subsumption (determining whether C ⊑ D
holds in all models), concept consistency (checking
whether a concept can be instantiated in a non-empty
model), and instance checking (determining whether

an individual belongs to a concept). These reasoning
tasks are typically performed using tableau-based
decision procedures, which iteratively expand a set
of constraints until a contradiction is found or a model
is constructed.

To illustrate the power of DL reasoning, consider an
ontology representing a medical domain. Suppose
we define concepts Cardiologist ⊑ Doctor and
Doctor ⊑ Person, along with role assertions such
as treats ⊑ interactsWith. Given an individual d
with Cardiologist(d), an inference engine can deduce
Person(d) due to transitive subsumption. Additionally,
if an individual p is related to d via treats(p, d),
then interactsWith(p, d) follows from role hierarchy
constraints.

The computational complexity of DL reasoning
varies based on the expressivity of the language.
While basic languages like EL allow polynomial-time
subsumption checking, more expressive fragments
such as SHOIN (which underpins OWL DL) lead
to reasoning problems that are ExpTime-complete or
even NExpTime-complete. Despite these challenges,
optimized reasoners such as FaCT++, HermiT, and
Pellet implement sophisticated optimization
techniques, including dependency-directed
backtracking and caching mechanisms, to improve
performance.

A major aspect of DLs is their ability to support
role restrictions and qualified number constraints.
Consider the concept ≥ 2 hasSibling.Engineer, which
describes individuals with at least two siblings who
are engineers. Such constructs, available in SROIQ,
enable nuanced modeling of relationships beyond
what is feasible in simpler knowledge representation
languages.

DLs also support nominals (singleton classes for
specific individuals), which are crucial for defining
identity relations. For instance, the concept {Alice}
represents a class containing only Alice, which proves
useful in applications requiring named entities to be
explicitly referenced within the ontology. This feature
is particularly valuable in domains like legal reasoning,
where specific cases or entities need to be uniquely
identified.

Another powerful extension of DLs involves role
chaining, which allows composite roles to be inferred
from existing relations. For example, given the axioms
hasParent ◦ hasSibling ⊑ hasUncle, an AI system can
infer that if x has a parent y, and y has a sibling z, then
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z is an uncle ofx. This capability is essential in domains
where transitive inferences play a central role, such as
genealogical databases and biological ontologies.

The ability to handle uncertainty and exceptions is an
ongoing challenge for DL-based systems. Classical
DLs assume strict, monotonic reasoning: once a fact is
inferred, it cannot be retracted unless the underlying
axioms change. However, real-world reasoning often
involves default assumptions that can be overridden
by new evidence. Non-monotonic extensions to DLs,
such as defeasible reasoning frameworks, have been
proposed to model exceptions. For instance, while
birds generally fly (Bird ⊑ Fly), penguins do not
(Penguin ⊑ ¬Fly). Such considerations require
mechanisms beyond classical DL inference, such as
preferential models and circumscription [36] [37] g2,
[38].

Applications of DLs span various domains, including
biomedical informatics, where ontologies like
SNOMED CT and Gene Ontology provide structured
vocabularies for medical diagnoses and biological
functions. Similarly, DLs underpin legal knowledge
bases, facilitating automated reasoning about
regulatory compliance. In industrial settings,
DL-based systems are used for product configuration,
where constraints between components need to be
dynamically resolved.

Despite the robustness of DLs in structured knowledge
representation, integrating them with statistical
learning frameworks remains an open problem.
Machine learning models excel at capturing
associations in large datasets but lack explicit
reasoning capabilities. Hybrid approaches, such
as neural-symbolic integration, aim to combine the
structured expressivity of DLs with the flexibility of
statistical models, enabling systems to benefit from
both logical inference and empirical generalization
[39] [40] [41] [42].

OWL 2, standardized by the W3C, corresponds
closely to SROIQ. It supports a range of expressive
features, including role hierarchies (R1 ◦ R2 ⊑ S),
nominals (singleton concepts), qualified cardinality
restrictions (≥ n R.C), and reflexive or irreflexive
properties. Property characteristics are designated
with special axioms, such as Functional(hasSSN)
or Transitive(ancestorOf). These constructs allow
ontology engineers to represent a wide range of
domain knowledge for applications like healthcare,
e-commerce, or geospatial data.

One of the main advantages of description logics
is decidability: despite their richness, standard
reasoning tasks—subsumption, satisfiability, instance
checking—are decidable within certain complexity
bounds. For ALC, these tasks are EXPTIME-complete,
while specific profiles like EL or RL achieve
polynomial-time classification. OWL 2 further
refines these profiles to balance complexity and
expressivity. For example, EL++ omits certain
features like full negation or union, but retains
intersection and existential restrictions, enabling
large-scale classification in medical ontologies such
as SNOMED CT.

A central feature of OWL is its embrace of the
open-world assumption (OWA). Under the OWA, the
absence of evidence for a statement does not guarantee
its falsity. This stands in contrast to the closed-world
assumption (CWA), widely used in databases and
logic programming, where unasserted facts are treated
as false. Commonsense reasoning frequently mirrors a
closed-world perspective: when we do not know that a
typical object lacks a property, we presume it does have
that property (or vice versa). Reconciling the OWA
with the everyday reasoning style has therefore been
a focal challenge for knowledge engineers striving to
model commonsense in OWL.

Non-monotonic mechanisms like default logic,
circumscription, or epistemic operators (KC) attempt
to address this issue within DL frameworks. For
example, Bird(x) → Flies(x) can be interpreted as
a default rule, overridden only when contradictory
information like Penguin(x) is discovered. Although
such logic-based extensions bring the benefit
of explicit, explainable inferences, they also
raise complexity. Indeed, naive combinations of
non-monotonic reasoning with expressive DL features
can lead to undecidability, thereby demanding careful
restrictions in practice.

In addition to providing a semantic foundation, OWL
offers a standardized syntax (RDF/XML, Turtle, etc.)
that supports interoperability across different systems.
For instance, an ontology for geographical features
can integrate seamlessly with an ontology for financial
services, allowing for cross-domain queries and data
sharing. This synergy is especially critical for AI
systems that must operate across multiple knowledge
bases while retaining formal rigor [43] [44].
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Description Logic
Variant

Key Features

ALC Supports conjunction, disjunction, negation, and existential
quantification but lacks role hierarchies or number
restrictions.

SHOIN ExtendsALC with transitive roles, inverse roles, and number
restrictions; forms the basis of OWL DL.

SROIQ Further extends SHOIN with role inclusion axioms and
complex property chains; forms the basis of OWL 2.

Table 3. Comparison of Key Description Logic Variants

Reasoning Task Description
Subsumption Checking Determines whether one concept is a subset of another (C ⊑

D).
Concept Consistency Verifies whether a concept is satisfiable within a given

ontology.
Instance Checking Checks whether an individual belongs to a specified concept

(C(a)).
Role Inference Derives implicit role relationships based on transitivity and

role hierarchies.
Table 4. Description Logic Reasoning Tasks

3 Ontological Reasoning Mechanisms
At the core of most description logic reasoners lies
a tableau-based decision procedure. The tableau
algorithm attempts to construct a model satisfying
all T B≀§ and AB≀§ axioms. It does so by applying
expansion rules to individuals in the knowledge base,
systematically decomposing complex concepts and
propagating constraints. If a contradiction (also
known as a clash) emerges—such as an individual
being asserted to belong to both C and ¬C—the branch
is closed, signifying that no consistent interpretation
can be built along that path [45] [46] [47].

For ALC, the classical expansion rules include:

(-rule) : a : C ⊓ D =⇒ (a : C) ∧ (a : D),

(
⊔

-rule) : a : C ⊔ D =⇒ branch into (a : C) or (a : D),

(∃-rule) : a : ∃R.C =⇒ create b : C ∧ R(a, b),

(∀-rule) : a : ∀R.C ∧ R(a, b) =⇒ b : C.

In more expressive DLs, additional rules handle
features like role hierarchies, inverse roles, or qualified
cardinality.

To mitigate the exponential blowup often inherent
in these expansions, reasoners employ several
optimizations:

1. Caching and Memoization. Subsumption queries
of the form C ⊑ D are frequently repeated during
complex T B≀§ classification. By caching intermediate
results in a Directed Acyclic Graph (DAG), the
reasoner avoids redundant computations.

2. LazyUnfolding. Equivalence axioms like C ≡ D can
lead to large expansions if fully unfolded prematurely.
A lazy approach unfolds these axioms only when
necessary to resolve a clash or to test satisfiability,
thereby pruning branches earlier.

3. Blocking. In the presence of existential restrictions
and role chains, cycles can arise. For instance, a
node might be required to have a child that is also
constrained to have a child with the same description,
and so on. Blocking halts this infinite expansion
by recognizing when a newly created node would
duplicate the constraints of an existing node, effectively
merging their branches [48], [49].

4. Hybrid SAT-Encodings. For large AB≀§
data, certain reasoners translate the problem into
propositional clauses, using Boolean variables to
denote membership a : C or relationship R(a, b).
State-of-the-art SAT solvers then rapidly identify
contradictions or models in a more scalable manner
than direct tableau expansion.
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Beyond classical DL, one may incorporate
non-monotonic reasoning constructs. Epistemic
operators like KC require that C is known to be
true in all stable expansions of the knowledge base.
Translating these operators into tableau expansions
involves iterative fixed-point computations: the
reasoner guesses a set of known facts, checks for
consistency, and refines its guess until a fixpoint is
reached. Such procedures, while more involved, allow
for default statements akin to C ⇝ D to hold unless
contradicted by specific exceptions.

Importantly, employing these advanced techniques in
real-world applications can strain performance. For
example, indefinite role chains and the presence of
cardinalities in largeAB≀§ data can lead to exponential
growth of the search space. Practical systems thus
combine multiple strategies—tableau expansions for
the T B≀§, approximate matrix or tensor factorization
for the AB≀§, and specialized heuristic filters—to
ensure acceptable query times. In the subsequent
sections, we will examine how these mechanisms are
adapted and extended to accommodate commonsense
knowledge [50] [51].

4 Commonsense Knowledge Integration
Classical description logics provide crisp true/false
semantics, in line with the open-world assumption
and monotonic entailment. Commonsense, in contrast,
frequently consists of defeasible, probabilistic, or
context-laden knowledge. An exemplary statement
might be Breaks(x,Glass) → MakesSound(x) with
a certain likelihood (e.g., 0.8). This suggests the
statement is not universally valid and depends on
various situational conditions (thickness of the glass,
environment, etc.) [52] [53].

One approach to bridging this gap uses default
reasoning, a type of non-monotonic logic. In default
logic, a default rule typically appears as α:β

γ , read
as “If α is provable and β is consistent with the
knowledge base, then infer γ.” Translating such
rules into DL-based formalisms can be done via
circumscription or specialized constructs like⇝. For
instance, one might encode

Bird(x)⇝ Flies(x)

to hold by default, unless a more specific axiom (e.g.,
Penguin ⊑ ¬Flies) refines or contradicts it.

Another dimension is probabilistic reasoning. Markov
Logic Networks (MLNs) or Bayesian DL frameworks
integrate statistical weights with logical formulas. An

axiom might be assigned a weight w, influencing its
probability of being satisfied in a ground Markov
network. While such methods can gracefully handle
uncertainty, they often lose the crisp decidability and
explainability prized in classical DL [54] [55].

To enable partial integration of such methods, we
propose a two-tier architecture. The first tier is a
T B≀§ and AB≀§ containing standard DL axioms. The
second tier comprises soft constraints that specify
commonsense defaults or probabilistic statements,
such as:

⟨Cup(x) → HasHandle(x), 0.9⟩

During inference, the system first applies classical
DL entailment. If a statement is neither entailed
nor contradicted, it is delegated to the second tier,
which employs approximate or weighted inference
techniques. We represent the second tier with an
extended knowledge base K∗ = (T ,A,S), where S
holds the soft constraints and their associated weights
or default priorities.

Another crucial aspect of commonsense knowledge
is contextualization. Common sense often depends on
context or situation. A stove might serve as a heating
device in a cooking context but not necessarily in
a manufacturing setting. We encode context using
role or concept constructors like InContext(x,Cooking),
which triggers domain-specific axioms (e.g.,Heat(x) ≡
Stove(x) in that context). The same entity might
have different properties or relationships in a Cleaning
context [56] [57] [58].

Spatiotemporal reasoning also contributes to
commonsense. For example,

Event(e)∧hasTime(e, t)∧(t < 12:00) → MorningEvent(e)

captures the notion that an event taking place before
noon is a morning event. More sophisticated
approaches might rely on intervals or Allen’s interval
algebra to reason about concurrency or partial overlaps
between events.

Finally, bridging the gap between open-world and
closed-world assumptions can be tackled through
well-chosen punning or hybrid rules. In punning, an
individual is treated both as a class and an instance.
Tweety the bird can be an individual in theAB≀§while
also serving as a prototype concept Tweety in the T B≀§.
Such usage can model typical traits while allowing for
exceptions at the individual level.
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5 Case Study: System Implementation
The implementation presented in this paper
demonstrates how an integrated reasoner handles
default and contextual axioms in tandemwith classical
OWL reasoning. The system is built in Java, leveraging
the OWL API to parse and manipulate ontological
constructs, while employing a variant of the ELK
reasoner for fast classification in EL++ fragments.
This is augmented with a separate reasoning engine
for non-monotonic or probabilistic constraints [59].

Parsing and Mapping. The system ingests
raw commonsense assertions from CSV files
or JSON structures. For instance, an entry like
⟨cup, hasProperty, handle⟩ is mapped to an OWL
axiom Cup ⊑ ∃ hasProperty.Handle via a mapping
function Rmap. Defeasible or probabilistic statements
are placed in S, for example:

⟨Penguin ⊑ ¬Flies, p = 0.95⟩.

Classification Phase. Once the ontology is loaded,
the reasoner computes the subsumption hierarchy. In
EL++, classification reduces to a polynomial-time
forward-chaining procedure, linking each concept
with its superclasses. For more expressive features
(SROIQ), a tableau algorithm is triggered. The
internal data structures maintain a T B≀§ graph for
concept inclusions and an AB≀§ graph for instance
relationships [60] [61] [62] [63].

Default and Probabilistic Layer. After classification,
the system checks the second-tier constraints S. If
a default rule C ⇝ D applies to an individual
a, the reasoner attempts to assert D(a) unless a
contradictory statement ¬D(a) or a more specific rule
overrides it. Probabilistic constraints are resolved
via a maximum-likelihood or maximum a posteriori
assignment, conceptually akin to MLN inference. This
layer operates iteratively, allowing partial rewrites of
the AB≀§ if new information surfaces [64] [65].

Case Example. Consider the system receiving partial
knowledge about a typical cup:

Cup(c1), madeOf(c1,Ceramic).

It also sees a soft constraint Cup → HasHandle with
weight 0.9. The reasoner checks the T B≀§ for any
contradictions (e.g., a statement that certain cups must
not have handles). Finding none, it tentatively infers
HasHandle(c1). Later, if the user asserts that c1 is
actually handleless, the reasoner updates the knowledge

base to remove the inferred property for c1, preserving
consistency.

Winograd Schema Demonstration. The system is
tested on a set of Winograd schemas, which require
resolving ambiguous pronouns via commonsense
knowledge. A typical example might be: “The trophy
does not fit in the brown suitcase because it is too
small.” The correct resolution is that “it” refers to the
suitcase, not the trophy, based on knowledge of typical
sizes of trophies versus suitcases. The knowledge base
includes axioms like Trophy ⊑ ∃ fitsIn.Suitcase and
typical size constraints. By analyzing the concept fitsIn
inversely (fitsIn−) and the typical property constraints
of Suitcase, the system correctly resolves the pronoun.

Performance tests on about 200 such schemas
indicated that purely rule-based approaches (without
a robust ontology) struggled to handle ambiguous
statements consistently, achieving around 63%
accuracy. In contrast, the integrated reasoner with
default constraints reached 81% accuracy, nearly
matching the 85% human performance on the same
set.

6 Evaluation and Limitations
We evaluated our approach on three diverse
benchmarks: LUBM, CommonsenseQA, and YAGO2
entity-linking tasks. The purpose was to test both the
system’s raw reasoning performance and its ability to
handle incomplete, context-dependent knowledge.

LUBMBenchmark. The LehighUniversity Benchmark
(LUBM) consists of synthetic university data
containing classes likeProfessor, Course, and properties
such as teaches. For 10,000-triple AB≀§ configurations,
the system answered 15 out of 20 standard queries
with 100% precision in about 12 seconds. The missed
queries involved complex role compositions that
triggered extended tableau expansions. The reasoner’s
caching and blocking optimizations were critical in
preventing exponential blowups [66].

CommonsenseQA. This benchmark includes
multiple-choice questions requiring everyday
reasoning. By translating lexical cues into default
statements (e.g., a bird typically flies, water is
typically wet, etc.) and employing context-based
disambiguation, our system achieved 74% accuracy
compared to 85% for human annotators on the same
set. Notably, purely rule-based engines hovered near
60%, while large language models not grounded
in explicit ontology hovered around 70–73%. The
open-world assumption caused some queries to
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remain unanswered due to incomplete explicit
knowledge, underscoring the tension between the
OWL paradigm and typical human “closed-world”
common sense [67] [68] [69].

YAGO2 Entity Linking. YAGO2 is a large-scale
knowledge base integrating Wikipedia and WordNet.
We tested the system’s ability to infer SameAs(a, b)
relationships. Many entities (e.g., “William Jefferson
Clinton” and “Bill Clinton”) require lexical matching
plus background constraints (e.g., same birth date or
spouse) to merge. Our reasoner reached an F1 score
of 92%, slightly below specialized entity-linking tools
optimized for string similarity but still robust given
that no advanced text-mining heuristics were used.

Limitations.

1. Performance Bottlenecks: Handling long role chains
(beyond length 3) caused a 35% slowdown. This arises
from repeated pattern matching and expansions in
the tableau algorithm. 2. Scalability in Large AB≀§
Data: As AB≀§ size grows to hundreds of thousands
of individuals, complexity often drifts toward O(n1.5).
Execution times exceeded 60 seconds for some queries
at scales of n > 105. 3. Probabilistic Reasoning
Tradeoffs: Incorporating Markov Logic or Bayesian
networks within a DL reasoner can reduce precision
by up to 11%. Balancing crisp logical constraints
with statistical inference remains an open challenge,
requiring more sophisticated bridging approaches.
4. Context Modeling Complexity: Although roles like
InContext(x, c) are valuable, systematically encoding
all relevant contexts can lead to combinatorial
explosion. Fine-tuning the system for domain-specific
contexts may be more practical than attempting
universal solutions.

Compared to SQL-based relational systems, which
rely on the closed-world assumption, our OWL-based
approach outperformed them by 22% on join-heavy
reasoning tasks. However, it trailed Neo4j graph
queries by about 300ms per query on average,
reflecting overhead from the more complex
DL inferences. Hybrid strategies that combine
vector embeddings for instance retrieval with
subsequent logical checks reduced this latency by
40%, highlighting the potential for synergy between
symbolic and sub-symbolic methods [70] [71] [72].

7 Conclusion
This paper has presented a comprehensive framework
that integrates description logics, OWL-based
ontological modeling, and non-monotonic extensions

to address the inherent complexity of commonsense
reasoning. By leveraging tableau-based decision
procedures with optimizations such as blocking,
caching, and selective unfolding, the system achieves
tractable behavior on moderately sized knowledge
bases, while approximate matrix factorization or
tensor decomposition methods enable practical
reasoning over large-scale AB≀§ data [73] [74].

We demonstrated how default rules, circumscription,
epistemic operators, and soft constraints can be layered
atop classical DL axioms to represent open-ended,
ambiguous, and probabilistic commonsense
knowledge without completely sacrificing decidability
or clarity. Our case study on typical objects like
cups and Winograd schemas showcased the system’s
ability to infer context-sensitive properties. Empirical
results from the LUBM, CommonsenseQA, and
YAGO2 benchmarks confirmed improved accuracy
and coverage relative to purely rule-based or statistical
methods, although the open-world assumption
continues to pose conceptual hurdles for certain
everyday inference tasks.

Areas for future work include refining role chain
optimization, possibly through advanced caching
or partial evaluation, to mitigate performance
degradation in complex domains. Further, deeper
integration of neural-symbolic methods can augment
the system’s coverage and resilience in real-world
conditions, where data may be incomplete, noisy, or
semantically heterogeneous [75] [76]. Embedding
TBox axioms in vector spaces may also yield new
ways to perform concept subsumption checks.
Finally, exploring how to seamlessly toggle between
open-world and closed-world assumptions based
on domain context remains an essential research
direction, promising a more holistic approach to
bridging formal knowledge representation and
everyday human reasoning [77] [78] [79].

This research demonstrates that augmenting the
rigorous foundation of description logics with targeted
non-monotonic and probabilistic mechanisms can
substantially advance the state of commonsense
reasoning. Such an integrated approach is well-suited
for AI systems that demand both high-level
explainability and robust performance in domains
characterized by incomplete or context-dependent
information. While challenges remain in scaling
and fully reconciling the open-world paradigm with
everyday human perspectives, the findings underscore
the ongoing importance of semantic technologies for
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constructing intelligent systems capable of nuanced,
flexible, and transparent inference [80] [81].
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